Preview

Ученые записки Казанского университета. Серия Естественные науки

Расширенный поиск

IL-17-продуцирующие регуляторные Т-лимфоциты – супрессоры или эффекторы?

https://doi.org/10.26907/2542-064X.2023.3.393-410

Аннотация

Регуляторные Т-лимфоциты (Treg) представляют собой Т-хелперную популяцию, основной задачей которой является контроль интенсивности иммунного ответа и поддержание иммунной толерантности за счет избирательного подавления активности эффекторных Т-лимфоцитов. Однако клетки Treg нестабильны и обладают высокой пластичностью в направлении эффекторных Т-хелперных популяций, и наиболее распространенным вариантом является редифференцировка Treg в Т-хелперы, продуцирующие интерлейкин-17 (IL-17 (Th17)). Формирование таких клеток подтверждено многими исследованиями in vivo и in vitro, но данные об их функциональной активности крайне противоречивы. Между тем, этот вопрос принципиально важен: во-первых, увеличение популяции IL-17-продуцирующих Treg выявлено для целого ряда заболеваний, что ставит вопрос о механизмах участия этих клеток в развитии патологии; во-вторых, перспектива терапевтического использования Treg требует понимания и прогнозирования поведения этих клеток в провоспалительном окружении. В обзоре представлен анализ функциональных последствий редифференцировки клеток Treg в Th17.

Об авторах

Е. М. Куклина
Институт экологии и генетики микроорганизмов Уральского отделения Российской академии наук – филиал ПФИЦ УрО РАН
Россия

Куклина Елена Михайловна, доктор биологических наук, ведущий научный сотрудник лаборатории иммунорегуляции

ул. Голева, д. 13, г. Пермь, 614081



Н. С. Глебездина
Институт экологии и генетики микроорганизмов Уральского отделения Российской академии наук – филиал ПФИЦ УрО РАН
Россия

Глебездина Наталья Сергеевна, кандидат биологических наук, младший научный сотрудник лаборатории иммунорегуляции

ул. Голева, д. 13, г. Пермь, 614081



Список литературы

1. Vahedi G., Kanno Y., Sartorelli V., O’Shea J.J. Transcription factors and CD4 T cells seeking identity: Masters, minions, setters and spikers // Immunology. 2013. V. 139, No 3. P. 294–298. https://doi.org/10.1111/imm.12113.

2. Stadhouders R., Lubberts E., Hendriks R.W. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity // J. Autoimmun. 2018. V. 87. P. 1–15. https://doi.org/10.1016/j.jaut.2017.12.007.

3. Pandiyan P., Zheng L., Lenardo M.J. The molecular mechanisms of regulatory T cell immunosuppression // Front. Immunol. 2011. V. 2. Art. 60. https://doi.org/10.3389/fimmu.2011.00060.

4. Rudensky A.Y., Campbell D.J. In vivo sites and cellular mechanisms of T reg cell-mediated suppression // J. Exp. Med. 2006. V. 203, No 3. P. 489–492. https://doi.org/10.1084/jem.20060214.

5. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses // Annu. Rev. Immunol. 2004. V. 22. P. 531–562. https://doi.org/10.1146/annurev.immunol.21.120601.141122.

6. Groux H. Type 1 T-regulatory cells: Their role in the control of immune responses // Transplantation. 2003. V. 75, No 9. P. 8S–12S. https://doi.org/10.1097/01.TP.0000067944.90241.BD.

7. Koenen H.J.P.M., Smeets R.L., Vink P.M., van Rijssen E., Boots A.M.H., Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells // Blood. 2008. V. 112, No 6. P. 2340–2352. https://doi.org/10.1182/blood-2008-01-133967.

8. Yang X.O., Nurieva R., Martinez G.J., Kang H.S., Chung Y., Pappu B.P., Shah B., Chang S.H., Schluns K.S., Watowich S.S., Feng X.-H., Jetten A.M., Dong C. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs // Immunity. 2008. V. 29, No 1. P. 44–56. https://doi.org/10.1016/j.immuni.2008.05.007.

9. Ayyoub M., Deknuydt F., Raimbaud I., Dousset C., Leveque L., Bioley G., Valmori D. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt // Proc. Natl. Acad. Sci. U. S. A. 2009. V. 106, No 21. P. 8635–8640. https://doi.org/10.1073/pnas.0900621106.

10. Beriou G., Costantino C.M., Ashley C.W., Yang L., Kuchroo V.K., Baecher-Allan C., Hafler D.A. IL-17–producing human peripheral regulatory T cells retain suppressive function // Blood. 2009. V. 113, No 18. P. 4240–4249. https://doi.org/10.1182/blood-2008-10-183251.

11. Valmori D., Raffin C., Raimbaud I., Ayyoub M. Human RORγt+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors // Proc. Natl. Acad. Sci. U. S. A. 2010. V. 107, No 45. P. 19402–19407. https://doi.org/10.1073/pnas.1008247107.

12. Miyao T., Floess S., Setoguchi R., Luche H., Fehling H.J., Waldmann H., Huehn J., Hori S. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells // Immunity. 2012. V. 36, No 2. P. 262–275. https://doi.org/10.1016/j.immuni.2011.12.012.

13. Lochner M., Peduto L., Cherrier M., Sawa S., Langa F., Varona R., Riethmacher D., Si-Tahar M., Di Santo J.P., Eberl G. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells // J. Exp. Med. 2008. V. 205, No 6. P. 1381–1393. https://doi.org/10.1084/jem.20080034.

14. Liu X., Gao N., Li M., Xu D., Hou Y., Wang Q., Zhang G., Sun Q., Zhang H., Zeng X. Elevated levels of CD4+CD25+FoxP3+ T cells in systemic sclerosis patients contribute to the secretion of IL-17 and immunosuppression dysfunction // PLoS One. 2013. V. 8, No 6. Art. e64531. https://doi.org/10.1371/journal.pone.0064531.

15. Kryczek I., Wu K., Zhao E., Wei S., Vatan L., Szeliga W., Huang E., Greenson J., Chang A., Rolinski J., Radwan P., Fang J., Wang G., Zou W. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer // J. Immunol. 2011. V. 186, No 7. P. 4388–4395. https://doi.org/10.4049/jimmunol.1003251.

16. Zhou X., Bailey-Bucktrout S.L., Jeker L.T., Penaranda C., Martínez-Llordella M., Ashby M., Nakayama M., Rosenthal W., Bluestone J.A. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo // Nat. Immunol. 2009. V. 10, No 9. P. 1000–1007. https://doi.org/10.1038/ni.1774.

17. Esposito M., Ruffini F., Bergami A., Garzetti L., Borsellino G., Battistini L., Martino G., Furlan R. IL-17- and IFN-gamma-secreting Foxp3+ T cells infiltrate the target tissue in experimental autoimmunity // J. Immunol. 2010. V. 185, No 12. P. 7467–7473. https://doi.org/10.4049/jimmunol.1001519.

18. Bovenschen H.J., van de Kerkhof P.C., van Erp P.E., Woestenenk R., Joosten I., Koenen H.J.P.M. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin // J. Invest. Dermatol. 2011. V. 131, No 9. P. 1853–1860. https://doi.org/10.1038/jid.2011.139.

19. Wang T., Sun X., Zhao J., Zhang J., Zhu H., Li C., Gao N., Jia Y., Xu D., Huang F.-P., Li N., Lu L., Li Z.-G. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood // Ann. Rheum. Dis. 2015. V. 74, No 6. P. 1293–1301. https://doi.org/10.1136/annrheumdis-2013-204228.

20. Yang B.-H., Hagemann S., Mamareli P., Lauer U., Hoffmann U., Beckstette M., Föhse L., Prinz I., Pezoldt J., Suerbaum S., Sparwasser T., Hamann A., Floess S., Huehn J., Lochner M. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation // Mucosal. Immunol. 2016. V. 9, No 2. P. 444–457. https://doi.org/10.1038/mi.2015.74.

21. Zhu L., Song H., Zhang L., Meng H. Characterization of IL-17-producing Treg cells in type 2 diabetes patients // Immunol. Res. 2019. V. 67, No. 4–5. P. 443–449. https://doi.org/10.1007/s12026-019-09095-7.

22. Yazdani M.R., Khosropanah S., Doroudchi M. Interleukin-17 production by CD4+CD45RO+Foxp3+ T cells in peripheral blood of patients with atherosclerosis // Arch. Med. Sci. – Atheroscler. Dis. 2019. V. 4. P. e215–e224. https://doi.org/10.5114/amsad.2019.87525.

23. Henderson L.A., Hoyt K.J., Lee P.Y., Rao D.A., Jonsson A.H., Nguyen J.P., Rutherford K., Julé A.M., Charbonnier L.-M., Case S., Chang M.H., Cohen E.M., Dedeoglu F., Fuhlbrigge R.C., Halyabar O., Hazen M.M., Janssen E., Kim S., Lo J., Lo M.S., Meidan E., Son M.B.F., Sundel R.P., Stoll M.L., Nusbaum C., Lederer J.A., Chatila T.A, Nigrovic P.A. Th17 reprogramming of T cells in systemic juvenile idiopathic arthritis // JCI Insight. 2020. V. 5, No 6. Art. e132508. https://doi.org/10.1172/jci.insight.132508.

24. Prado D.S., Cattley R.T., Shipman C.W., Happe C., Lee M., Boggess W.C., MacDonald M.L., Hawse W.F. Synergistic and additive interactions between receptor signaling networks drive the regulatory T cell versus T helper 17 cell fate choice // J. Biol. Chem. 2021. V. 297, No 6. Art. 101330. https://doi.org/10.1016/j.jbc.2021.101330.

25. Weerakoon H., Straube J., Lineburg K., Cooper L., Lane S., Smith C., Alabbas S., Begun J., Miles J.J., Hill M.M., Lepletier A. Expression of CD49f defines subsets of human regulatory T cells with divergent transcriptional landscape and function that correlate with ulcerative colitis disease activity // Clin. Transl. Immunol. 2021. V. 10, No 9. Art. e1334. https://doi.org/10.1002/cti2.1334.

26. Li Q., Lu J., Li J., Zhang B., Wu Y., Ying T. Antibody-based cancer immunotherapy by targeting regulatory T cells // Front Oncol. 2023. V. 13. Art. 1157345. https://doi.org/10.3389/fonc.2023.1157345.

27. Gonçalves-Pereira M.H., Santiago L., Ravetti C.G., Vassallo P.F., de Andrade M.V.M., Vieira M.S., de Oliveira F.d.F.S., Carobin N.V., Li G., de Paula Sabino A., Nobre V., da Costa Santiago H. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases // Immunology. 2023. V. 168, No 4. P. 684–696. https://doi.org/10.1111/imm.13603.

28. Pouw J.N., Olde Nordkamp M.A.M., van Kempen T., Concepcion A.N., van Laar J.M., van Wijk F., Spierings J., Leijten E.F.A., Boes M. Regulatory T cells in psoriatic arthritis: An IL-17A-producing, Foxp3intCD161+RORγt+ICOS+ phenotype, that associates with the presence of ADAMTSL5 autoantibodies // Sci Rep. 2022. V. 12, No 1. Art. 20675. https://doi.org/10.1038/s41598-022-24924-w.

29. Kim G.-R., Kim W.-J., Lim S., Lee H.-G., Koo J.-H., Nam K.-H., Kim S.-M., Park S.-D., Choi J.-M. In vivo induction of regulatory T cells via CTLA-4 signaling peptide to control autoimmune encephalomyelitis and prevent disease relapse // Adv. Sci. 2021. V. 8, No 14. Art. 2004973. https://doi.org/10.1002/advs.202004973.

30. Fiyouzi T., Pelaez-Prestel H.F., Reyes-Manzanas R., Lafuente E.M., Reche P.A. Enhancing regulatory T cells to treat inflammatory and autoimmune diseases // Int. J. Mol. Sci. 2023. V. 24, No 9. Art. 7797. https://doi.org/10.3390/ijms24097797.

31. Glasner A., Rose S.A., Sharma R., Gudjonson H., Chu T., Green J.A., Rampersaud S., Valdez I.K., Andretta E.S., Dhillon B.S., Schizas M., Dikiy S., Mendoza A., Hu W., Wang Z.-M., Chaudhary O., Xu T., Mazutis L., Rizzuto G., Quintanal-Villalonga A., Manoj P., de Stanchina E., Rudin C.M., Pe’er D., Rudensky A.Y. Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies // Nat. Immunol. 2023. V. 24, No 6. P. 1020–1035. https://doi.org/10.1038/s41590-023-01504-2.

32. Jung M.K., Kwak J.-E., Shin E.-C. IL-17A-producing Foxp3+ regulatory T cells and human diseases // Immune Network. 2017. V. 17, No 5. P. 276–286. https://doi.org/10.4110/in.2017.17.5.276.

33. Hatzioannou A., Boumpas A., Papadopoulou M., Papafragkos I., Varveri A., Alissafi T., Verginis P. Regulatory T cells in autoimmunity and cancer: A duplicitous lifestyle // Front. Immunol. 2021. V. 12. Art. 731947. https://doi.org/10.3389/fimmu.2021.731947.

34. Alvarez F., Piccirillo C.A. The functional adaptation of effector Foxp3+ regulatory T cells to pulmonary inflammation // Eur. J. Immunol. 2023. V. 53, No 9. Art. e2250273. https://doi.org/10.1002/eji.202250273.

35. Voo K.S., Wang Y.-H., Santori F.R., Boggiano C., Wang Y.-H., Arima K., Bover L., Hanabuchi S., Khalili J., Marinova E., Zheng B., Littman D.R., Liu Y.-J. Identification of IL-17-producing FOXP3+ regulatory T cells in humans // Proc. Natl. Acad. Sci. U. S. A. 2009. V. 106, No 12. P. 4793–4798. https://doi.org/10.1073/pnas.0900408106.

36. Korn T., Reddy J., Gao W., Bettelli E., Awasthi A., Petersen T.R., Bäckström B.T., Sobel R.A., Wucherpfennig K.W., Strom T.B., Oukka M., Kuchroo V.K. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation // Nat. Med. 2007. V. 13, No 4. P. 423–431. https://doi.org/10.1038/nm1564.

37. Xu L., Kitani A., Fuss I., Xu W.S. Cutting edge: Regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β // J. Immunol. 2007. V. 178, No 11. P. 6725–6729. https://doi.org/10.4049/jimmunol.178.11.6725.

38. Nyirenda M.H., Sanvito L., Darlington P.J., O’Brien K., Zhang G.-X., Constantinescu C.S., Bar-Or A., Gran B. TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function // J. Immunol. 2011. V. 187, No 5. P. 2278–2290. https://doi.org/10.4049/jimmunol.1003715.

39. Osorio F., LeibundGut-Landmann S., Lochner M., Lahl K., Sparwasser T., Eberl G., e Sousa C.R. DC activated via dectin-1 convert Treg into IL-17 producers // Eur. J. Immunol. 2008. V. 38, No 12. P. 3274–3281. https://doi.org/10.1002/eji.200838950.

40. Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., Parizot C., Taflin C., Heike T., Valeyre D., Mathian A., Nakahata T., Yamaguchi T., Nomura T., Ono M., Amoura Z., Gorochov G., Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor // Immunity. 2009. V. 30, No 6. P. 899–911. https://doi.org/10.1016/j.immuni.2009.03.019.

41. Komatsu N., Okamoto K., Sawa S., Nakashima T., Oh-hora M., Kodama T., Tanaka S., Bluestone J.A., Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis // Nat. Med. 2014. V. 20, No 1. P. 62–68. https://doi.org/10.1038/nm.3432.

42. Hsieh C.-S., Liang Y., Tyznik A.J., Self S.G., Liggitt D., Rudensky A.Y. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors // Immunity. 2004. V. 21, No 2. P. 267–277. https://doi.org/10.1016/j.immuni.2004.07.009.

43. Singh K., Gatzka M., Peters T., Borkner L., Hainzl A., Wang H., Sindrilaru A., Scharffetter-Kochanek K. Reduced CD18 levels drive regulatory T cell conversion into Th17 cells in the CD18hypo PL/J mouse model of psoriasis // J. Immunol. 2013. V. 190, No 6. P. 2544–2553. https://doi.org/10.4049/jimmunol.1202399.

44. Martínez-Blanco M., Lozano-Ojalvo D., Pérez-Rodríguez L., Benedé S., Molina E., López-Fandiño R. Retinoic acid induces functionally suppressive Foxp3+RORγt+ T cells in vitro // Front. Immunol. 2021. V. 12. Art. 675733. https://doi.org/10.3389/fimmu.2021.675733.

45. Williams L.M., Rudensky A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3 // Nat. Immunol. 2007. V. 8, No 3. P. 277–284. https://doi.org/10.1038/ni1437.

46. Poon M.M.L., Caron D.P., Wang Z., Wells S.B., Chen D., Meng W., Szabo P.A., Lam N., Kubota M., Matsumoto R., Rahman A., Luning Prak E.T., Shen Y., Sims P.A., Farber D.L. Tissue adaptation and clonal segregation of human memory T cells in barrier sites // Nat. Immunol. 2023. V. 24, No 2. P. 309–319. https://doi.org/10.1038/s41590-022-01395-9.

47. Lam A.J., Uday P., Gillies J.K., Levings M.K. Helios is a marker, not a driver, of human Treg stability // Eur. J. Immunol. 2022. V. 52, No 1. P. 75–84. https://doi.org/10.1002/eji.202149318.

48. Ogawa C., Bankoti R., Nguyen T., Hassanzadeh-Kiabi N., Nadeau S., Porritt R.A., Couse M., Fan X., Dhall D., Eberl G., Ohnmacht C., Martins G.A. Blimp-1 functions as a molecular switch to prevent inflammatory activity in Foxp3+RORγt + regulatory T cells // Cell Rep. 2018. V. 25, No 1. P. 19–28. https://doi.org/10.1016/j.celrep.2018.09.016.

49. Hippen K.L., Loschi M., Nicholls J., MacDonald K.P.A., Blazar B.R. Effects of MicroRNA on regulatory T cells and implications for adoptive cellular therapy to ameliorate graft-versus-host disease // Front. Immunol. 2018. V. 9. Art. 57. https://doi.org/10.3389/fimmu.2018.00057.

50. Alvarez F., Istomine R., Shourian M., Pavey N., Al-Aubodah T. A.-F., Qureshi S., Fritz J.H., Piccirillo C.A. The alarmins IL-1 and IL-33 differentially regulate the functional specialisation of Foxp3+ regulatory T cells during mucosal inflammation // Mucosal Immunol. 2019. V. 12, No 3. P. 746–760. https://doi.org/10.1038/s41385-019-0153-5.

51. Joller N., Lozano E., Burkett P.R., Patel B., Xiao S., Zhu C., Xia J., Tan T.G., Sefik E., Yajnik V., Sharpe A.H., Quintana F.J., Mathis D., Benoist C., Hafler D.A., Kuchroo V.K. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses // Immunity. 2014. V. 40, No 4. P. 569–581. https://doi.org/10.1016/j.immuni.2014.02.012.


Рецензия

Для цитирования:


Куклина Е.М., Глебездина Н.С. IL-17-продуцирующие регуляторные Т-лимфоциты – супрессоры или эффекторы? Ученые записки Казанского университета. Серия Естественные науки. 2023;165(3):393-410. https://doi.org/10.26907/2542-064X.2023.3.393-410

For citation:


Kuklina E.M., Glebezdina N.S. IL-17-Producing Regulatory T lymphocytes – Suppressors or Effectors? Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2023;165(3):393-410. (In Russ.) https://doi.org/10.26907/2542-064X.2023.3.393-410

Просмотров: 186


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)