Вольтамперометрический способ определения судана I для контроля качества пищевых продуктов
https://doi.org/10.26907/2542-064X.2023.3.374-392
Аннотация
Судан I является синтетическим азокрасителем, запрещенным к применению в пищевой промышленности. В целях контроля качества и безопасности пищевых продуктов необходимы простые и экспрессные способы его определения. Предложен вольтамперометрический подход, основанный на окислении судана I на стеклоуглеродном электроде (СУЭ), модифицированном диспергированными в гексадецилпиридиний бромиде наностержнями диоксида марганца (НС MnO2). Для модифицированного электрода показано 7.9- и 9.2-кратное увеличение электроактивной площади поверхности и скорости переноса электрона соответственно по сравнению с СУЭ, что подтверждает эффективность использования НС MnO2 в качестве модификатора. Установлено, что необратимое электроокисление судана I сопровождается переносом протонов и контролируется как диффузией, так и поверхностными процессами. Для аналитических целей использован дифференциально-импульсный режим вольтамперометрии в среде фосфатного буферного раствора рН 6.5. Показана линейность отклика электрода на судан I в диапазонах 0.050–2.5 и 2.5–25 мкМ. Предел обнаружения составляет 13.5 нМ. Предложенный подход апробирован в анализе пищевых продуктов (сушеная и копченая паприка и семга). Значения степени открытия (99–101%) подтверждают отсутствие матричных эффектов и практическую применимость метода.
Ключевые слова
Об авторах
Л. Т. ГимадутдиноваРоссия
Гимадутдинова Лилия Тимуровна, аспирант кафедры аналитической химии Химического института им. А.М. Бутлерова
ул. Кремлевская, д. 18, г. Казань, 420008
Г. К. Зиятдинова
Россия
Зиятдинова Гузель Камилевна, доктор химических наук, доцент, профессор кафедры аналитической химии Химического института им. А.М. Бутлерова
ул. Кремлевская, д. 18, г. Казань, 420008
Список литературы
1. Msagati T.A.M. Chemistry of food additives and preservatives. Chichester: John Wiley & Sons, 2012. 336 p. https://doi.org/10.1002/9781118274132.
2. König J. 2 – Food colour additives of synthetic origin // Colour Additives for Foods and Beverages / Ed. by M.J. Scotter. Amsterdam: Woodhead Publ., 2015. P. 35–60. https://doi.org/10.1016/B978-1-78242-011-8.00002-7.
3. Chung K.-T. Azo dyes and human health: A review. J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev., 2016. V. 34, No. 4. P. 233–261. https://doi.org/10.1080/10590501.2016.123660.
4. Damant A.P. 8 – Food colourants // Handbook of Textile and Industrial Dyeing: Applications of Dyes / Ed. by M. Clark. Amsterdam: Woodhead Publ., 2011. V. 2. P. 252–305. https://doi.org/10.1533/9780857094919.2.252.
5. European Food Safety Authority. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) to review the toxicology of a number of dyes illegally present in food in the EU // EFSA J. 2005. V. 3, No. 9. Art. 263. https://doi.org/10.2903/j.efsa.2005.263.
6. Bienstock R.J., Perera L., Pasquinelli M.A. Molecular modeling study of the genotoxicity of the Sudan I and Sudan II azo dyes and their metabolites // Front. Chem. 2022. V. 10. Art. 880782. https://doi.org/10.3389/fchem.2022.880782.
7. Stiborová M., Martínek V., Rydlova H., Hodek P., Frei E. Sudan I is a potential carcinogen for humans: Evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes // Cancer Res. 2002. V. 62, No. 20. P. 5678–5684.
8. Food Fraud: A Global Threat with Public Health and Economic Consequences / Ed. by R.S. Hellberg, K. Everstine, S.A. Sklare. N.Y.: Acad. Press, 2021. 414 p. https://doi.org/10.1016/C2018-0-00952-4.
9. МУК 4.1.2483-09. Определение непищевых красителей Судан I, Судан II, Судан III, Судан IV и Para Red в пищевых продуктах и биологически активных добавках к пище. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 10 с.
10. Zhou Q., Wu Y., Yuan Y., Zhou X., Wang H., Tong Y., Zhan Y., Sun Y., Sheng X. Determination of Sudan red contaminants at trace level from water samples by magnetic solid-phase extraction using Fe@NiAl-layered double hydroxide coupled with HPLC // Environ. Sci. Eur. 2019. V. 31, No. 1. Art. 34. https://doi.org/10.1186/s12302-019-0215-z.
11. Pham T.C., Dang X.T., Nguyen B.N., Vu T.T. Determination of Sudan I and II in food by high-performance liquid chromatography after simultaneous adsorption on nanosilica // J. Anal. Methods Chem. 2021. V. 2021. Art. 6664463. https://doi.org/10.1155/2021/6664463.
12. Nie X., Xie Y., Wang Q., Wei H., Xie C., Li Y., Wang B., Li Y. Rapid determination of Sudan dyes in chilli products using ultra-high-performance supercritical fluid chromatography-photodiode array detection // CyTA – J. Food. 2021. V. 19, No. 1. P. 560–570. https://doi.org/10.1080/19476337.2021.1925746.
13. Botek P., Poustka J., Hajšlová J. Determination of banned dyes in spices by liquid chromatography–mass spectrometry // Czech J. Food Sci. 2007. V. 25, No. 1. P. 17–24. https://doi.org/10.17221/737-CJFS.
14. Al Tamim A., AlRabeh M., Al Tamimi A., AlAjlan A., Alowaifeer A. Fast and simple method for the detection and quantification of 15 synthetic dyes in sauce, cotton candy, and pickle by liquid chromatography/tandem mass spectrometry // Arabian J. Chem. 2020. V. 13, No. 2. P. 3882–3888. https://doi.org/10.1016/j.arabjc.2019.09.008.
15. Moreno-Gonzalez D., Jáč P., Švec F., Nováková L. Determination of Sudan dyes in chili products by micellar electrokinetic chromatography-MS/MS using a volatile surfactant // Food Chem. 2020. V. 310. Art. 125963. https://doi.org/10.1016/j.foodchem.2019.125963.
16. Chen Y., Mao S., Chen F., Zhao S., Su W., Fu L., Zare N., Karimi F. Electrochemical detection of Sudan red series azo dyes: Bibliometrics based analysis // Food Chem. Toxicol. 2022. V. 163. Art. 112960. https://doi.org/10.1016/j.fct.2022.112960.
17. Gómez M., Arancibia V., Aliaga M., Núñez C., Rojas-Romo C. Determination of Sudan I in drinks containing Sunset yellow by adsorptive stripping voltammetry // Food Chem. 2016. V. 212. P. 807–813. https://doi.org/10.1016/j.foodchem.2016.05.183.
18. Karaboduk K., Hasdemır E. Voltammetric determination of Sudan 1 in food samples using its Cu(II) compound // Food Technol. Biotechnol. 2018. V. 56, No. 4. P. 573–580. https://doi.org/10.17113/ftb.56.04.18.5679.
19. Wu M., Tang W., Guimarães J., Wang Q., He P., Fang Y. Electrochemical detection of Sudan I using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode // Am. J. Anal. Chem. 2013. V. 4, No. 6A. P. 1–6. https://doi.org/10.4236/ajac.2013.46A001.
20. Ma X., Chao M., Wang Z. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement ef- fect of sodium dodecyl sulphonate // Food Chem. 2013. V. 138, Nos. 2–3. P. 739–744. https://doi.org/10.1016/j.foodchem.2012.11.004.
21. Li X., Sun X., Li M. Detection of Sudan I in foods by a MOF-5/MWCNT modified electrode // ChemistrySelect. 2020. V. 5, No 41. P. 12777–12784. https://doi.org/10.1002/slct.202003559.
22. Yang L., Wang S., Zhang L. Electrochemical sensor based on MWCNTs/AuNPs/GCE for sensitive determination of Sudan I content in food samples // Int. J. Electrochem. Sci. 2020. V. 15, No. 11. P. 11168–11179. https://doi.org/10.20964/2020.11.77.
23. Palanisamy S., Kokulnathan T., Chen S.-M., Velusamy V., Ramaraj S.K. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode // J. Electroanal. Chem. 2017. V. 794. P. 64–70. https://doi.org/10.1016/j.jelechem.2017.03.041.
24. Meng F., Qin Y., Zhang W., Chen F., Zheng L., Xing J., Aihaiti A., Zhang M. Amplified electrochemical sensor employing Ag NPs functionalized graphene paper electrode for high sensitive analysis of Sudan I // Food Chem. 2022. V. 371. Art. 131204. https://doi.org/10.1016/j.foodchem.2021.131204.
25. Wu Q., Ji C., Zhang L., Shi Q., Wu Y., Tao H. A simple sensing platform based on a 1T@2H-MoS2/cMWCNTs composite modified electrode for ultrasensitive detection of illegal Sudan I dye in food samples // Anal. Methods. 2022. V. 14, No. 5. P. 549–559. https://doi.org/10.1039/D1AY01775F.
26. Beitollahi H., Tajik S., Nejad F.G., Askari M.B., Salarizadeh P. Electroanalytical performance of hierarchical nanostructures of MgCo2O4 on reduced graphene oxide modified screen-printed electrode for the sensitive determination of Sudan I // Int. J. Environ. Anal. Chem. 2021. https://doi.org/10.1080/03067319.2021.1974422.
27. Raoof J.B., Teymoori N., Khalilzadeh M.A. ZnO nanoparticle ionic liquids carbon paste electrode as a voltammetric sensor for determination of Sudan I in the presence of vitamin B6 in food samples // Food Anal. Methods. 2015. V. 8, No. 4. P. 885–892. https://doi.org/10.1007/s12161-014-9962-z.
28. Pahlavan A., Rezanejad N., Karimi-Maleh H., Jamali M.R., Abbasghorbani M., Beitollahi H., Atar N. Voltammetric nanostructure-based sensor for determination of sudan I in food samples // Int. J. Electrochem. Sci. 2015. V. 10, No. 4. P. 3644–3656. https://doi.org/10.1016/S1452-3981(23)06568-9.
29. Kumari R., Kumar H., Sharma R., Yadav A., Kumar G., Tundwal A., Dhayal A., Sharma A. Highly sensitive amperometric food sensor for Sudan-I dye using nanocomposites modified working electrode // Microchem. J. 2023. V. 193. Art. 109078. https://doi.org/10.1016/j.microc.2023.109078.
30. Vinothkumar V., Sangili A., Chen S.-M., Chen T.-W., Abinaya M., Sethupathi V. Voltammetric determination of Sudan I by using Bi2WO6 nanosheets modified glassy carbon electrode // Int. J. Electrochem. Sci. 2020. V. 15, No. 3. P. 2414–2429. https://doi.org/10.20964/2020.03.08.
31. Mahmoudi-Moghaddam H., Tajik S., Beitollahi H. Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples // Food Chem. 2019. V. 286. P. 191–196. https://doi.org/10.1016/j.foodchem.2019.01.143.
32. Ye Q., Chen X., Yang J., Wu D., Ma J., Kong Y. Fabrication of CuO nanoparticles-decorated 3D N-doped porous carbon as electrochemical sensing platform for the detection of Sudan I // Food Chem. 2019. V. 287. P. 375–381. https://doi.org/10.1016/j.foodchem.2019.02.108.
33. Deng L., Yuan J., Huang H., Xie S., Xu J., Yue R. Fabrication of hierarchical Ru/PEDOT:PSS/Ti3C2Tx nanocomposites as electrochemical sensing platforms for highly sensitive Sudan I detection in food // Food Chem. 2022. V. 372. Art. 131212. https://doi.org/10.1016/j.foodchem.2021.131212.
34. Fazio E., Spadaro S., Corsaro C., Neri G., Leonardi S.G., Neri F., Lavanya N., Sekar C., Donato N., Neri G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors // Sensors. 2021. V. 21, No. 7. Art. 2494. https://doi.org/10.3390/s21072494.
35. Ziyatdinova G., Gimadutdinova L. Cerium(IV) and iron(III) oxides nanoparticles based voltammetric sensor for the sensitive and selective determination of lipoic acid // Sensors. 2021. V. 21. No 22. Art. 7639. https://doi.org/10.3390/s21227639.
36. Agnihotri A.S., Varghese A., Nidhin M. Transition metal oxides in electrochemical and bio sensing: A state-of-art review // Appl. Surf. Sci. Adv. 2021. V. 4. Art. 100072. https://doi.org/10.1016/j.apsadv.2021.100072.
37. Зиятдинова Г.К., Будников Г.К. Вольтамперометрическое определение тартразина на электроде, модифицированном наночастицами диоксида церия и цетилтрифенилфосфоний бромидом // Журнал аналит. химии. 2022. Т. 77, № 6. С. 514–521. https://doi.org/10.31857/S0044450222060202.
38. Baytak A.K., Akbaş E., Aslanoglu M. A novel voltammetric platform based on dysprosium oxide for the sensitive determination of sunset yellow in the presence of tartrazine // Anal. Chim. Acta. 2019. V. 1087. P. 93–103. https://doi.org/10.1016/j.aca.2019.08.055.
39. Sohal N., Maity B., Shetti N.P., Basu S. Biosensors based on MnO2 nanostructures: A review. ACS Appl. Nano Mater. 2021. V. 4, No. 3. P. 2285–2302. https://doi.org/10.1021/acsanm.0c03380.
40. Wu Y., Deng P., Tian Y., Magesa F., Liu J., Li G., He Q. Construction of effective electrochemical sensor for the determination of quinoline yellow based on different morphologies of manganese dioxide functionalized graphene // J. Food Compos. Anal. 2019. V. 84. Art. 103280. https://doi.org/10.1016/j.jfca.2019.103280.
41. Ding Z., Deng P., Wu Y., Tian Y., Li G., Liu J., He Q. A novel modified electrode for detection of the food colorant sunset yellow based on nanohybrid of MnO2 nanorods-decorated electrochemically reduced graphene oxide. Molecules. 2019. V. 24, No. 6. Art. 1178. https://doi.org/10.3390/molecules24061178.
42. Gimadutdinova L., Ziyatdinova G., Davletshin R. Selective voltammetric sensor for the simultaneous quantification of tartrazine and brilliant blue FCF. Sensors. 2023. V. 23, No. 3. Art. 1094. https://doi.org/10.3390/s23031094.
43. Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. 2nd ed. N.Y.: John Wiley & Sons, 2001. 864 p.
44. Randviir E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using electrochemical impedance spectroscopy and cyclic voltammetry // Electrochim. Acta. 2018. V. 286. P. 179–186. https://doi.org/10.1016/j.electacta.2018.08.021.
45. Gan T., Sun J., He M., Wang L. Highly sensitive electrochemical sensor for Sudan I based on graphene decorated with mesoporous TiO2 // Ionics. 2014. V. 20, No. 1. P. 89–95. https://doi.org/10.1007/s11581-013-0951-9.
Рецензия
Для цитирования:
Гимадутдинова Л.Т., Зиятдинова Г.К. Вольтамперометрический способ определения судана I для контроля качества пищевых продуктов. Ученые записки Казанского университета. Серия Естественные науки. 2023;165(3):374-392. https://doi.org/10.26907/2542-064X.2023.3.374-392
For citation:
Gimadutdinova L.T., Ziyatdinova G.K. Voltammetric Determination of Sudan I for Foodstuff Quality Control. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2023;165(3):374-392. (In Russ.) https://doi.org/10.26907/2542-064X.2023.3.374-392