Evaluation of copolymer composition homogeneity using mathematical modeling methods
https://doi.org/10.26907/2542-064X.2025.4.728-738
Abstract
This article introduces an innovative method for quantifying the degree of composition homogeneity in copolymers using mathematical modeling techniques. Applicable to copolymers for which the mechanism of microstructure formation can described in terms of the Markov chains, the method consists in obtaining a set of shares of unit sequences of a given length from a high-resolution NMR spectrum (set A) and then finding, through mathematical modeling of the Markov matrix, transient probabilities in order to build a model of a polymer chain containing such a set of shares of unit sequences (set B) that matches, as close as possible, set A. The dispersion resulting from the comparison of sets A and B is proposed as a quantitative criterion for the degree of composition homogeneity.
About the Authors
Y. P. SokolovРоссия
Yuri P. Sokolov, Cand. Sci. (Chemistry), Leading Researcher, Laboratory of Fluoromonomers
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
S. A. Kulachenkov
Россия
Sergey A. Kulachenkov, Senior Researcher, Laboratory of Fluoromonomers
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
V. A. Lovchikov
Россия
Vladimir A. Lovchikov, Dr. Sci. (Chemistry), Full Professor, Chief Researcher, Laboratory of Fluoromonomers
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
G. A. Emel’yanov
Россия
Gennadii A. Emel’yanov, Dr. Sci. (Chemistry), Head of the Laboratory of Fluoromonomers
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
N. N. Ilyina
Россия
Natalya N. Ilyina, Researcher, Laboratory of Ecology of Transport Systems
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
References
1. Boyer C., Valade D., Lacroix-Desmazes P., Ameduri B., Boutevin B. Kinetics of the iodine transfer polymerization of vinylidene fluoride. J. Polym. Sci., Part A: Polym. Chem., 2006, vol. 44, no. 19, pp. 5763–5777. https://doi.org/10.1002/pola.21654.
2. Kunkel D., Müller A.H.E., Janata M., Lochmann L. The role of association/complexation equilibria in the anionic polymerization of (meth)acrylates. Makromol. Chem. Macromol. Symp., 1992, vol. 60, no. 1, pp. 315–326. https://doi.org/10.1002/masy.19920600128.
3. Rodin V.M., Kulachenkov S.A., Emelianov G.A. Synthesis and determination of microstructure of low-molecular copolymers of ethylene with tetrafluoroethylene and hexafluoropropylene by 1H and 19F NMR. Bull. St. Petersburg State Inst. Technol. (Tech. Univ.), 2018, no. 43(69), pp. 36–42. (In Russian)
4. Bravaya N.M., Nedorezova P.M., Tsvetkova V.I. Controlled synthesis of stereoblock polypropylene. New trends in the development of elastomers. Russ. Chem. Rev., 2002, vol. 71, no. 1, pp. 49–70. https://doi.org/10.1070/RC2002v071n01ABEH000698.
5. Lebedev N.V., Zhuravlev M.V., Lovchikov V.A., Berenblit V.V. A statistical description of the structure formation of vinylidene fluoride–hexafluoropropene copolymers according to 19F NMR spectroscopy. Polym. Sci., Ser. B, 2012, vol. 54, nos. 3–4, pp. 259–269. https://doi.org/10.1134/S1560090412040033.
6. Fazakas-Anca I.S., Modrea A., Vlase S. Determination of reactivity ratios from binary copolymerization using the k-nearest neighbor non-parametric regression. Polymers, 2021, vol. 13, no. 21, art. 3811. https://doi.org/10.3390/polym13213811.
7. Mathew M., Duever T. Reactivity ratio estimation in non-linear polymerization models using Markov Chain Monte Carlo techniques and an error-in-variables framework. Macromol. Theory Simul., 2015, vol. 24, no. 6, pp. 566–579. https://doi.org/10.1002/mats.201500017.
8. Myagchenkov V.A., Frenkel’ S.Ya. Kompozitsionnaya neodnorodnost’ sopolimerov [Compositional Heterogeneity of Copolymers]. Leningrad, Khimiya, 1988, 248 p. (In Russian)
9. Kelen T., Tüdõs F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. J. Macromol. Sci., Part A: Pure Appl. Chem., 1975, vol. 9, no. 1, pp. 1–27. https://doi.org/10.1080/00222337508068644.
10. Carman C.J., Harrington R.A., Wilkes C.E. Monomer sequence distribution in ethylene-propylene rubber measured by 13C NMR. 3. Use of reaction probability model. Macromolecules, 1977, vol. 10, no. 3, pp. 536–544. https://doi.org/10.1021/ma60057a008.
11. Volkenstein M.V. Konfiguratsionnaya statistika polimernykh tsepei [Configurational Statistics of Polymeric Chains]. Moscow, Leningrad, Izd. Akad. Nauk SSSR, 1959. 466 p. (In Russian)
12. Frenkel’ S.Ya. Vvedenie v statisticheskuyu teoriyu polimerizatsii [Introduction to the Statistical Theory of Polymerization]. Moscow, Leningrad, Nauka, 1965, 267 p. (In Russian)
13. Flory P.J. Statisticheskaya mekhanika tsepnykh molekul [Statistical Mechanics of Chain Molecules]. Moscow, Mir, 1971. 440 p. (In Russian)
14. Cheng H.N. Perturbed Markovian probability models. Macromolecules, 1992, vol. 25, no. 9, pp. 2351–2358. https://doi.org/10.1021/ma00035a011.
15. Cheng H.N. Compositional heterogeneity of alginates through NMR analysis. Polym. Bull., 1999, vol. 43, nos. 2–3, pp. 247–254. https://doi.org/10.1007/s002890050559.
16. Cheng H.N., Asakura T., Suganuma K., Lagaron J.M., Melendez-Rodriguez B., Biswas A. NMR analyses and statistical modeling of biobased polymer microstructures – a selected review. Polymers, 2024, vol. 16, no. 5, art. 620. https://doi.org/10.3390/polym16050620.
17. Cheng H.N. NMR characterization of copolymers that exhibit nonsymmetric compositional heterogeneity. Macromolecules, 1997, vol. 30, no. 14, pp. 4117–4125. https://doi.org/10.1021/ma961744t.
18. Brar A.S., Hekmatyar S.K. Microstructure determination of the acrylonitrile–styrene–methyl methacrylate terpolymers by NMR spectroscopy. J. Appl. Polym. Sci., 1999, vol. 74, no. 13, pp. 3026–3032. https://doi.org/10.1002/(SICI)1097-4628(19991220)74:13<3026::AID-APP3>3.0.CO;2-C.
19. Brar A.S., Malhotra M. Compositional assignments and sequence distribution of vinylidene chloride− methyl acrylate copolymers using one- and two-dimensional NMR spectroscopy. Macromolecules, 1996, vol. 29, no. 23, pp. 7470–7476. https://doi.org/10.1021/ma960363c.
20. Feng Y., Hay J.N. The measurement of compositional heterogeneity in a propylene– ethylene block copolymer. Polymer, 1998, vol. 39, no. 26, pp. 6723–6731. https://doi.org/10.1016/S0032-3861(98)00129-3.
21. Lebedev N., Juravlev M., Berenblit V., Sokolov J., Lovchikov V., Volkova M., Gubanov V. Analysis of composition and microstructure of copolymers of tetrafluoroethylene with perfluoromethylvinyl ether according to NMR 19F data. Fluorine Notes, 2010, no. 4(71), pp. 18–29.
22. Pianca M., Bonardelli P., Tatò M., Cirillo G., Moggi G. Composition and sequence distribution of vinylidene fluoride copolymer and terpolymer fluoroelastomers. Determination by 19F nuclear magnetic resonance spectroscopy and correlation with some properties. Polymer, 1987, vol. 28, no. 2, pp. 224–230. https://doi.org/10.1016/0032-3861(87)90408-3.
Review
For citations:
Sokolov Y.P., Kulachenkov S.A., Lovchikov V.A., Emel’yanov G.A., Ilyina N.N. Evaluation of copolymer composition homogeneity using mathematical modeling methods. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(4):728-738. (In Russ.) https://doi.org/10.26907/2542-064X.2025.4.728-738
JATS XML


















