Antioxidant potential and phenolic composition of Cistanche tinctoria: A comparative study of crude, flavonoid, and tannin extracts
https://doi.org/10.26907/2542-064X.2025.2.242-253
Аннотация
The antioxidant capacity and phenolic composition of Cistanche tinctoria (Orobanchaceae) were evaluated in the crude, flavonoid, and tannin extracts prepared from air-dried flowers using methanol, ethyl acetate, and acetone, respectively. The highest extraction yield (11.3 %) was obtained with the crude extract. The elevated total phenolic (168 ± 24 mg GAE/g) and flavonoid (27 ± 3 mg QE/g) contents in the crude extract were revealed. The tannin extract exhibited the highest antioxidant activity (IC50 8 ± 2 µg/mL), but, in terms of antioxidant and antiradical properties, all extracts were significantly less effective than ascorbic acid. The flavonoid extract demonstrated the greatest hemolysis inhibition (23 %). The highest absorbance (0.432) was observed for the tannin extract at a concentration of 0.1 mg/mL. Based on the high-performance liquid chromatography analysis, chlorogenic acid and naringenin were identified as the major phenolic compounds in the crude extract. The results validate the health benefits of phenolic compounds in C. tinctoria and highlight further research priorities for its applied and medicinal use.
Ключевые слова
Об авторах
А. ChouikhАлжир
Atef Chouikh - Professor of Biology, Faculty of Natural and Life Sciences, Head of Laboratory of Biology, Environment and Health.
El Oued
Конфликт интересов:
The authors declare no conflicts of interest
А. Ben Ali
Алжир
Anis Ben Ali - PhD Student, Department of Cellular and Molecular Biology, Associate Member of Laboratory of Biology, Environment and Health.
El Oued
Конфликт интересов:
The authors declare no conflicts of interest
А. Chenguel
Алжир
Aouatef Chenguel - Student, Department of Cellular and Molecular Biology.
El Oued
Конфликт интересов:
The authors declare no conflicts of interest
Список литературы
1. Chaudhary P., Janmeda P., Docea A.O., Yeskaliyeva B., Abdull Razis A.F., Modu B., Calina D., Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem., 2023, vol. 11, art. 1158198. https://doi.org/10.3389/fchem.2023.1158198.
2. Sharifi-Rad M., Anil Kumar N.V., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Tsouh Fokou P.V., Azzini E., Peluso I., Prakash Mishra A., Nigam M., El Rayess Y., Beyrouthy M.E., Polito L., Iriti M., Martins N., Martorell M., Docea A.O., Setzer W.N., Calina D., Cho W.C., Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, vol. 11, art. 694. https://doi.org/10.3389/fphys.2020.00694.
3. Akbari B., Baghaei-Yazdi N., Bahmaie M., Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors, 2022, vol. 48, no. 3, pp. 611–633. https://doi.org/10.1002/biof.1831.
4. Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol., 2020, vol. 94, no. 3, pp. 651–715. https://doi.org/10.1007/s00204-020-02689-3.
5. Bouzitouna A., Ouali K., Djeddi S. Protective effects of Cistanche tinctoria aqueous extract on blood glucose and antioxidant defense system of pancreatic β-cells in experimental diabetes in rats. Int. J. Pharm. Sci. Rev. Res., 2015, vol. 32, no. 2, pp. 243–249.
6. Lakhdari W., Dehliz A., Acheuk F., Mlik R., Hammi H., Doumandji-Mitiche B., Gheriani S., Berrekbia M., Guermit K., Chergui S. Ethnobotanical study of some plants used in traditional medicine in the region of Oued Righ (Algerian Sahara). J. Med. Plants Stud., 2016, vol. 4, no. 2, pp. 204–211.
7. Chouikh A., Alia F. Phytochemical properties, antibacterial and anti-free radical activities of the phenolic extracts of Retama raetam (Forssk) Webb. & Berthel. collected from Algeria Desert. Ovidius. Univ. Ann. Chem., 2021, vol. 32, no. 1, pp. 33–39. https://doi.org/10.2478/auoc-2021-0005.
8. Chouikh A., Mekki M., Adjal E.H. Effects of extraction methods on antibacterial activity of different extracts of Calligonum comosum L’her. growing in Sahara Algerian. Int. J. Recent Sci. Res., 2015, vol. 6, no. 4, pp. 3534–3536.
9. Chouikh A., Chemsa A.E., Aounallah C., Aounallah I., Alia F. Phytochemical study, nutritive value, antioxidant and anti-inflammatory activities of phenolic extracts from desert plant Calligonum comosum L’Hér. Alger. J. Biosci., 2020, vol. 1, no. 2, pp. 68–75. http://dx.doi.org/10.5281/zenodo.4395515.
10. Chouikh A., Ben Ali A., Bousbia Brahim A., Khezzani K., Bekkouche S. Comparative analysis of phytochemical composition and biological activities of sprouted and unsprouted Chenopodium quinoa Willd. seeds: Insights into nutritional value and functional properties. Acta Univ. Cibiniensis, Ser. E: Food Technol., 2024, vol. 28, no. 1, pp. 55–64. https://doi.org/10.2478/aucft-2024-0005.
11. Chouikh A., Ben Ali A., Bousbia Brahim A. Exploring therapeutic potential of Malcolmia aegyptiaca Spr. and Matthiola livida DC. extracts in rat models using hot-plate, writhing and carrageenan-induced paw edema tests. Acta Med. Bulg., 2024, vol. 51, suppl. 2, pp. 102–109. https://doi.org/10.2478/amb-2024-0060.
12. Ben Ali A., Chouikh A. Bioactive potential of Algerian Citrullus colocynthis resin: Antioxidant and anti-inflammatory effects. Not. Sci. Biol., 2024, vol. 16, no. 3, art. 11782. https://doi.org/10.55779/nsb16311782.
13. Chouikh A., Ben Ali A., Bousbia Brahim A., Bekkouche A., Seghaier S. Phytochemical analysis and biological activities of Matthiola livida DC. extracts from Oued-Souf region: Insights into antioxidant and anti-inflammatory potential. Acta Period. Technol., 2024, vol. 55, no. 1, pp. 107–124. https://doi.org/10.2298/APT2455107C.
14. Mesbahi M.A., Ouahrani M.R., Rebiai A., Amara D.G., Chouikh A. Characterization of Zygophyllum album L monofloral honey from El-Oued, Algeria. Curr. Nutr. Food Sci., 2019, vol. 15, no. 5, pp. 476–483. https://doi.org/10.2174/1573401314666180223135430.
15. Ben Ali A., Chouikh A., Haddad L. Cyperus rotundus tubers resin from Algeria: A promising source of natural antioxidants, anti-inflammatory, and photoprotective compounds. OvidiusUniv. Ann. Chem., 2023, vol. 34, no. 2, pp. 132–139. https://doi.org/10.2478/auoc-2023-0017.
16. Lee K.W., Kim Y.J., Lee H.J., Lee C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem., 2003, vol. 51, no. 25, pp. 7292–7295. https://doi.org/10.1021/jf0344385.
17. Lazarjani M.P., Young O., Kebede L., Seyfoddin A. Processing and extraction methods of medicinal cannabis: A narrative review. J. Cannabis Res., 2021, vol. 3, no. 1, art. 32. https://doi.org/10.1186/s42238-021-00087-9.
18. Nejad Ebrahimi S., Hadian J., Mirjalili M.H., Sonboli A., Yousefzadi M. Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food. Chem., 2008, vol. 110, no. 4, pp. 927–931. https://doi.org/10.1016/j.foodchem.2008.02.083.
19. Onofre S.B., Abatti D., Tessaro A.A., Tessaro A.B. Total phenolic, flavonoid content and antioxidant activity of Vitex megapotamica (Spreng.) Moldenke. Ciência. Natura., 2016, vol. 38, no. 3, pp. 1197–1204. https://doi.org/10.5902/2179460X21363.
20. Yao L.H., Jiang Y.M., Shi J., Tomás-Barberán F., Datta N., Singanusong R., Chen S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, vol. 59, no. 3, pp. 113–122. https://doi.org/10.1007/s11130-004-0049-7.
21. Hermans C., Hammond J.P., White P.J., Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci., 2006, vol. 11, no. 12, pp. 610–617. https://doi.org/10.1016/j.tplants.2006.10.007.
22. de Toledo C.E.M., Britta E.A., Ceole L.F., Silva E.R., de Mello J.C., Dias Filho B.P., Nakamura C.V., Ueda-Nakamura T. Antimicrobial and cytotoxic activities of medicinal plants of the Brazilian cerrado, using Brazilian cachaça as extractor liquid. J. Ethnopharmacol., 2011, vol. 133, no. 2, pp. 420–425. https://doi.org/10.1016/j.jep.2010.10.021.
23. Johari M.A., Khong H.Y. Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Adv. Pharmacol. Pharm. Sci., 2019, vol. 2019, no. 1, art. 7428593. https://doi.org/10.1155/2019/7428593.
24. Mahtout R., Zaidi F., Saadi L.O., Boudjou S., Oomah B.D., Hosseinian F. Carob (Ceratonia siliqua L.) supplementation affects kefir quality and antioxidant capacity during storage. Int. J. Eng. Tech., 2016, vol. 2, no. 2, pp. 168–177.
25. Cai Y.-Z., Sun M., Xing J., Luo Q., Corke H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci., 2006, vol. 78, no. 25, pp. 2872–2888. https://doi.org/10.1016/j.lfs.2005.11.004.
26. Debouba M., Balti R., Hwiwi S., Zouari S. Antioxidant capacity and total phenols richness of Cistanche violacea hosting Zygophyllum album. Int. J. Phytomed., 2012, vol. 4, no. 3, pp. 399–402.
27. Diplock A.T. Will the ‘good fairies’ please prove to us that vitamin E lessens human degenerative disease? Free Radical Res., 1997, vol. 27, no. 5, pp. 511–532. https://doi.org/10.3109/10715769709065791.
28. Zheng C.-D., Li G., Li H.-Q., Xu X.-J., Gao J.-M., Zhang A.-L. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Nat. Prod. Commun., 2010, vol. 5, no. 11, art. 1934578X1000501112. https://doi.org/10.1177/1934578X1000501112.
29. Cai Y., Luo Q., Sun M., Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, vol. 74, no. 17, pp. 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047.
30. Truong D.-H., Nguyen D.H., Ta N.T.A., Bui A.V., Do T.H., Nguyen H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual., 2019, vol. 2019, art. 178294. https://doi.org/10.1155/2019/8178294
31. Abeysuriya H.I., Bulugahapitiya V.P., Jayatissa L.P. Total vitamin C, ascorbic acid, dehydroascorbic acid, antioxidant properties, and iron content of underutilized and commonly consumed fruits in Sri Lanka. Int. J. Food Sci., 2020, vol. 2020, no. 1, art. 4783029. https://doi.org/10.1155/2020/4783029.
32. Dolci A., Panteghini M. Harmonization of automated hemolysis index assessment and use: Is it possible? Clin. Chim. Acta, 2014, vol. 432, pp. 38–43. https://doi.org/10.1016/j.cca.2013.10.012.
33. Kalaivani T., Rajasekaran C., Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan. J. Food Sci., 2011, vol. 76, no. 6, pp. T144–T149. https://doi.org/10.1111/j.1750-3841.2011.02243.x.
34. Makni M., Jemai R., Kriaa W., Chtourou Y., Fetoui H. Citrus limon from Tunisia: Phytochemical and physicochemical properties and biological activities. BioMed Res. Int., 2018, vol. 2018, art. 251546. https://doi.org/10.1155/2018/6251546.
35. Guo T., Wei L., Sun J., Hou C.-l., Fan L. Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chem., 2011, vol. 127, no. 4, pp. 1634–1640. https://doi.org/10.1016/j.foodchem.2011.02.030.
36. Saague P.W.K., Moukette Moukette B., Njimou J.R., Biapa P.C.N., Nzufo Tankeu F., Moor V.J.A., Pieme C.A., Ngogang J.Y. Phenolic compounds from water-ethanol extracts of Tetrapleura tetraptera produced in Cameroon, as potential protectors against In vivo CCl4-induced liver injuries. Sci. World J., 2019, vol. 2019, art. 236851. https://doi.org10.1155/2019/5236851.
37. Jothy S.L., Aziz A., Chen Y., Sasidharan S. Antioxidant activity and hepatoprotective potential of Polyalthia longifolia and Cassia spectabilis leaves against paracetamol-induced liver injury. Evidence-Based Complementary Altern. Med., 2012, vol. 2012, art. 561284. https://doi.org/10.1155/2012/561284.
38. Gil M., Wianowska D. Chlorogenic acids – their properties, occurrence and analysis. Ann. Univ. Mariae Curie-Sklodowska, Sect. AA: Chem., 2017, vol. 72, no. 1, pp. 61–104. http://dx.doi.org/10.17951/aa.2017.72.1.61.
39. Santana-Gálvez J., Cisneros-Zevallos L., Jacobo-Velázquez D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 2017, vol. 22, no. 3, art. 358. https://doi.org/10.3390/molecules22030358.
40. Liang N., Kitts D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 2015, vol. 8, no. 1, art. 16. https://doi.org/10.3390/nu8010016.
41. Raja Kumar S., Mohd Ramli E.S., Abdul Nasir N.A., Ismail N.H.M., Mohd Fahami N.A. Preventive effect of naringin on metabolic syndrome and its mechanism of action: A systematic review. Evidence-Based Complementary Altern. Med., 2019, vol. 2019, art. 752826. ahttps://doi.org/10.1155/2019/9752826.
Рецензия
Для цитирования:
Chouikh А., Ben Ali А., Chenguel А. Antioxidant potential and phenolic composition of Cistanche tinctoria: A comparative study of crude, flavonoid, and tannin extracts. Ученые записки Казанского университета. Серия Естественные науки. 2025;167(2):242-253. https://doi.org/10.26907/2542-064X.2025.2.242-253
For citation:
Chouikh A., Ben Ali A., Chenguel A. Antioxidant potential and phenolic composition of Cistanche tinctoria: A comparative study of crude, flavonoid, and tannin extracts. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):242-253. https://doi.org/10.26907/2542-064X.2025.2.242-253