Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Classification of sediments on the exposed banks of the Oka River using granulometric composition

https://doi.org/10.26907/2542-064X.2025.1.154-180

Abstract

An overview of the lithological diversity of soils at the bottom of the Oka River valley, particularly its Ryazan section, was performed. In a semi-stationary study of the geomorphic processes, a total of 231 soil samples were collected from the channel slopes with distinct erosion patterns. The geological data were supplemented by topographic mapping with unmanned aerial vehicles (UAVs), during which the boundaries of sedimentary facies on the exposed banks of the semi-stationary areas were identified and delineated in the GIS products. Granulometric analysis by the hydraulic and sieving methods, along with the analysis of the distribution of coarse clastic material within the geological strata, was carried out to determine the mechanical composition of soils on the Oka River banks. Based on the ratio of sand, silt, and clay measured through clustering and machine learning, the fine clastic soils were classified into four to five homogeneous groups. Four granulotypes of floodplain sections, each with a distinct occurrence of glacial and alluvial facies, can serve as a valuable geological and geomorphological element for applied modeling in regional estimates of horizontal channel deformation rates.

About the Authors

A. Y. Vorobyov
Ryazan State University named for S. Yesenin
Russian Federation

Aleksey Y. Vorobyov, Cand. Sci. (Geography), Associate Professor, Department of Geography, Ecology, and Tourism

Ryazan


Competing Interests:

The authors declare no conflicts of interest.



A. S. Kadyrov
Ryazan State University named for S. Yesenin
Russian Federation

Aleksandr S. Kadyrov, Postgraduate Student, Assistant, Department of Geography, Ecology, and Tourism

Ryazan


Competing Interests:

The authors declare no conflicts of interest.



E. V. Burgov
National Research Center “Kurchatov Institute”; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Russian Federation

Evgenii V. Burgov, Cand. Sci. (Biology), Head of the Biotechnical KK MBIKS-PT Systems Group of the Robotics Laboratory; Engineer, Laboratory of Soil Zoology and General Entomology

Moscow


Competing Interests:

The authors declare no conflicts of interest.



D. S. Lokteev
Moscow State University of Geodesy and Cartography
Russian Federation

Dmitry S. Lokteev, Student, Correspondence Faculty

Moscow


Competing Interests:

The authors declare no conflicts of interest.



A. A. Balobina
Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Anna A. Balobina, Master’s Student, Institute of Ecology

Moscow


Competing Interests:

The authors declare no conflicts of interest.



References

1. Romanovskii S.I. Fizicheskaya sedimentologiya [Physical Sedimentology]. Leningrad, Nedra, 1988. 240 p. (In Russian)

2. Trofimov V.T., Korolev V.A., Voznesenskii E.A., Golodkovskaya E.A., Vasil’chuk Y.K., Ziangirov R.S. Gruntovedenie [Soil Science]. Moscow, Izd. MGU, 2005. 1024 p. (In Russian)

3. Frolov V.T. Litologiya [Lithology]. Book 2. Moscow, Izd. MGU, 1992. 430 p. (In Russian)

4. Miall A. Fluvial Depositional Systems. Ser.: Springer Geology. Cham, Springer, 2014. ix, 316 p. https://doi.org/10.1007/978-3-319-00666-6.

5. State Standard 25100-2020. Soils. Classification. Moscow, Standartinform, 2020. 41 p. (In Russian)

6. Korobkin V.I., Peredel’skii L.V. Inzhenernaya geologiya i okhrana okruzhayushchei sredy [Engineering Geology and Environmental Protection]. Rostov-on-Don, Izd. Rostov. Univ., 2013. 348 p. (In Russian)

7. Faustov S.S., Karpukhin S.S., Sudakova N.G. Influence of moraine sedimentation conditions on the remanence direction. Vestn. Mosk. Univ. Ser. 5. Geogr., 2010, no. 1, pp. 35–43. (In Russian)

8. Chalov R.S., Golosov V.N., Sidorchuk A.Yu. (Eds.) Erozionno-ruslovye sistemy [Catchment Erosion-Fluvial Systems]. Мoscow, INFRA-M, 2017. 702 p. (In Russian)

9. Woodward J., Foster I. Erosion and suspended sediment transfer in river catchments: Environmental controls, processes and problems. Geography, 1997, vol. 82, no. 44, pp. 353–376. https://doi.org/10.1080/20436564.1997.12452621.

10. Krivtsov V.A. Rel’ef Ryazanskoi oblasti (regional’nyi geomorfologicheskii analiz) [Relief of the Ryazan Region (Regional Geomorphologic Analysis)]. Ryazan, Izd. RGPU, 1998. 195 p. (In Russian)

11. Krivtsov V.A., Vorobyev A.Yu., Komarov M.M. The Oka River and the evolution of relief in the southern part of the Meschera Lowland in the quaternary period. Vestn. Ryazan. Gos. Univ., 2016, no. 2/51, pp. 181–197. (In Russian)

12. Simonov Yu.G. Geomorfologiya. Metodologiya fundamental’nykh issledovanii [Geomorphology. Fundamental Research Methodology]. St. Petersburg, Piter, 2005. 427 p. (In Russian)

13. Baryshnikov N.B. Problemy morfologii, gidrologii i gidravliki poim [Problems of Morphology, Hydrology, and Hydraulics of Floodplains]. St. Petersburg, RGGMU, 2012. 426 p. (In Russian)

14. Zaidelman F.R., Belichenko M.V., Bibin A.S. Degradation and restoration of soils in the Moscow River floodplain for the last fifty years. Eurasian Soil Sci., 2013, vol. 46, no. 11, pp. 1097–1106. https://doi.org/10.1134/S1064229313110070.

15. Das V.K., Roy S., Barman K., Chaudhuri S., Debnath K. Study of clay–sand network structures and its effect on river bank erosion: An experimental approach. Environ. Earth Sci., 2019, vol. 78, no. 20, art. 591. https://doi.org/10.1007/s12665-019-8613-5.

16. Glasko M.P., Alexandrovskiy A.L. Interaction of alluvial and soil formation processes at different stages of the flood plains development during the Holocene (the rivers of the central part of the East European Plain as an example). Geomorfologiya, 2014, no. 4, pp. 3–17. https://doi.org/10.15356/0435-4281-2014-4-3-16. (In Russian)

17. Barovsky N.A. Hydrologic-morphodynamic analysis of free-meandering channels at different stages of their evolution. Geomorfologiya, 2005, no. 4, pp. 54–63. https://doi.org/10.15356/0435-4281-2005-4-54-63. (In Russian)

18. Berkovich K.M. Rusla rek i deyatel’nost’ cheloveka [River Channels and Human Activity]. Moscow, Printkov, 2020. 146 p. (In Russian)

19. Muromtsev N.A., Mazhaiskii Yu.A., Semenov N.A., Lytkin I.I., Shuravilin A.V., Tomin Yu.A. Pochvy dolin rek Oki i Ugry i ikh produktivnost’ [Soils of the Oka and Ugra Valleys and Their Productivity]. Ryazan, RGATU im. prof. P.A. Kostycheva, 2011. 203 p. (In Russian)

20. Shantser E.V. Alluvium of lowland rivers in the temperate zone and its importance for understanding the structure and development of alluvial formations. Tr. Inst. Geol. Nauk. Geol. Ser. (no. 55), 1951, vol. 135. 271 p. (In Russian)

21. Lazarenko A.A. Alluvium lithology of lowland rivers in the humid zone (a case study of the Dnieper, Desna, and Oka). Tr. Geol. Inst. Akad. Nauk SSSR, 1964, no. 120. 237 p. (In Russian)

22. Luchnikov A.I., Lyakhin Y.S., Lepikhin A.P. Using unmanned aerial vehicles for assessing the condition of shorelines in surface water bodies. Vodn. Khoz. Ross.: Probl., Tekhnol., Upr., 2018, no. 1, pp. 37–46. https://doi.org/10.35567/1999-4508-2018-1-3. (In Russian)

23. Rekomendatsii po otsenke i prognozu razmyva beregov ravninnykh rek i vodokhranilishch dlya stroitel’stva PNIIIS Gosstroya SSSR [Recommendations on Assessing and Forecasting the Erosion of Lowland River and Reservoir Banks for Construction of the Production and Research Institute for Engineering Surveys in Construction, State Committee for Construction in the Soviet Union]. Мoscow, Stroiizdat, 1987. 200 p. (In Russian)

24. Solntsev N.A. Uchenie o landshafte: izbrannye trudy [Landscape Studies: Selected Works]. Moscow, Izd. MGU, 2001. 383 p. (In Russian)

25. Barman K., Roy S., Das V.K., Debnath K. Effect of clay fraction on turbulence characteristics of flow near an eroded bank. J. Hydrol., 2019, vol. 571, pp. 87–102. https://doi.org/10.1016/j.jhydrol.2019.01.061.

26. Lagasse P.F., Zewenbergen L.W., Spitz W.J., Thorne C.R. Methodology for Predicting Channel Migration. Washington, DC, Transp. Res. Board, 2004. 214 p.

27. Karmaker T., Dutta S. Erodibility of fine soil from the composite river bank of Brahmaputra in India. Hydrol. Processes, 2011, vol. 25, no. 1, pp. 104–111. https://doi.org/10.1002/hyp.7826.

28. Vorobyov A. Yu., Krivtcov V.A., Kadyrov A.S. Current dynamics of accumulation and composition of alluvium in the near-channel floodplain of the Oka River (Russia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 4, pp. 603–625. https://doi.org/10.26907/2542-064X.2021.4.603-625. (In Russian)

29. Krivtsov V.A., Vorobyov A.Yu., Vodorezov A.V., Zazovskaya E.P. Features of the floodplain formation of the Oka River in its middle reaches: The case study of the “Spasskoe” local widening. Geomorfologiya, 2020, no. 3, pp. 56–71. https://doi.org/10.31857/S0435428120030050. (In Russian)

30. Belyakov A.A., Berkovich K.M. The Oka River: Problems and prospects for reconstruction. In: Erozionnye i ruslovye protsessy [Erosion and Channel Processes]. Vol. 4. Мoscow, Izd. MGU, 2005. pp. 251–273. (In Russian)

31. Luppi L., Rinaldi M., Teruggi L.B., Darby S.E., Nardi L. Monitoring and numerical modelling of riverbank erosion processes: A case study along the Cecina River (central Italy). Earth Surf. Processes Landforms, 2009, vol. 34, no. 4, pp. 530–546. https://doi.org/10.1002/esp.1754.

32. Shu A., Li F., Liu H., Duan G., Zhou X. Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper Yellow River. Int. J. Sediment Res., 2016, vol. 31, no. 4, pp. 291–298. https://doi.org/10.1016/j.ijsrc.2016.03.002.

33. Zong Q., Xia J., Zhou M., Deng S., Zhang Y. Modelling of the retreat process of composite riverbank in the Jingjiang Reach using the improved BSTEM. Hydrol. Processes, 2017, vol. 31, no. 26, pp. 4669–4681. https://doi.org/10.1002/hyp.11387.

34. Smirnova E.A., Lobanov G.V., Bastrakov G.V. The impact of ground hardness on riverbed deformations in the middle reach of the Desna River. Geomorfologiya, 2009, no. 2, pp. 75–83. https://doi.org/10.15356/0435-4281-2009-2-75-83.

35. Remo J.W.F., Heine R.A., Ickes B.S. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA. Geomorphology, 2016, vol. 264, pp. 118–131. https://doi.org/10.1016/j.geomorph.2016.04.012.

36. Elenevskii P.A. Okskie luga [Meadows of the Oka River]. Moscow, Nov. Derevnya, 1924. 64 p. (In Russian)

37. Romanova E.I., Kuptsov A.G. (Eds.) Podzemnaya okhrannaya zona istoricheskoi territorii Ryazanskogo Kremlya [Protected Underground Space of the Ryazan Kremlin Territory]. Ryazan, Stil’, 1995. 138 p. (In Russian)

38. Matlakhova E.Yu., Ukraintsev V.Yu. The structure of the Moksha River floodplain as a key to the Late Pleistocene history of the valley development. Geomorfologiya, 2022, vol. 53, no. 5, pp. 127–133. https://doi.org/10.31857/S0435428122050108. (In Russian)

39. Hamshaw S.D., Bryce T., Rizzo D.M., O’Neil-Dunne J., Frolik J., Dewoolkar M.M. Quantifying streambank movement and topography using unmanned aircraft system photogrammetry with comparison to terrestrial laser scanning. River Res. Appl., 2017, vol. 33, no. 8, pp. 1354–1367. https://doi.org/10.1002/rra.3183.

40. Glushkov B.V. Sedimentasry geology of the Don ice tongue complex. Vestn. VGU. Ser.: Geol., 2011, no. 2, pp. 40–48. (In Russian)

41. Vadyunina А.F., Korchagina Z.А. Metody issledovaniya fizicheskikh svoistv pochv [Methods for Studying the Physical Properties of Soils]. Moscow, Agropromizdat, 1986. 416 p. (In Russian)

42. State Standard 12536-2014. Soils. Methods of laboratory granulometric (grain-size) and microaggregate distribution. Moscow, Standardinform, 2019. 23 p. (In Russian)

43. Vukolov E.A. Osnovy statisticheskogo analiza. Praktikum po statisticheskim metodam i issledovaniyu operatsii s ispol’zovaniem paketov STATISTICA i EXCEL [Fundamentals of Statistical Analysis. Handbook of Statistical Methods and Operations Research Using STATISTICA and EXCEL Packages]. Moscow, FORUM, 2008. 464 p. (In Russian)

44. Fahad A., Alshatri N., Tari Z., Alamri A., Khalil I., Zomaya A.Y., Foufou S., Bouras A. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput., 2014, vol. 2, no. 3. pp. 267–279. https://doi.org/10.1109/TETC.2014.2330519.

45. Xia J., Zhang J., Wang Y., Han L., Yan H. WC-KNNG-PC: Watershed clustering based on k-nearest-neighbor graph and Pauta Criterion. Pattern Recognit., 2022, vol. 121, art. 108177. https://doi.org/10.1016/j.patcog.2021.108177.

46. Fox G.A., Heeren D.M., Miller R.B., Mittelstet A.R., Storm D.E. Flow and transport experiments for a streambank seep originating from a preferential flow pathway. J. Hydrol., 2011, vol. 403, nos. 3–4, pp. 360–366. https://doi.org/10.1016/j.jhydrol.2011.04.014.

47. Vorob’ev A.Ju., Kadyrov A.S., Lokteev D.S., Burgov E.V., Balobina A.A. Calculation of seasonal erosion on the Oka River riverbanks using geodetic modeling. Izv. Russ. Geogr. O-va., 2023, vol. 155, no. 2, pp. 25–43. https://doi.org/10.31857/S0869607123020088. (In Russian)

48. Shein E.V., Karpachevskii L.O (Eds.). Teorii i metody fiziki pochv [Theories and Methods of Soil Physics]. Мoscow, Grif i К, 2007. 616 p. (In Russian)


Review

For citations:


Vorobyov A.Y., Kadyrov A.S., Burgov E.V., Lokteev D.S., Balobina A.A. Classification of sediments on the exposed banks of the Oka River using granulometric composition. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(1):154-180. (In Russ.) https://doi.org/10.26907/2542-064X.2025.1.154-180

Views: 57


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)