Laser-induced transformation of H3 defects in natural diamonds
https://doi.org/10.26907/2542-064X.2025.1.116-129
Abstract
Raman spectroscopy is a modern spectroscopic technique well-suited for diamond research. However, heating by high-power lasers can induce thermal damage to solid materials. To examine the effects of laser radiation on nitrogen defects in diamond crystals, luminescence spectra recorded during controlled laser heating at the surface of natural diamonds with green stains were analyzed. By focusing on H3 defects, the laser intensity threshold at which defect annealing or transformation occurs was identified. The findings from this study offer practical guidance on determining the frequencies of nitrogen defects in natural diamonds using luminescence spectroscopy. Such frequencies are a key typomorphic feature of diamonds and reflect important aspects of their genetic history.
Keywords
About the Author
S. I. IsaenkoRussian Federation
Sergey I. Isaenko, Cand. Sci. (Geology and Mineralogy), Senior Researcher, Institute of Geology, FRC Komi Science Center
Syktyvkar
Competing Interests:
The author declares no conflicts of interest.
References
1. Isaenko S.I., Shumilova T.G. Thermally stimulated and dynamic effects in identification and study of carbon materials by Raman spectroscopy. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2021, vol. 163, no. 1, pp. 72–87. https://doi.org/10.26907/2542-064X.2021.1.72-87. (In Russian)
2. Bokii G.B., Bezrukov G.N., Klyuev Yu.A., Naletov A.M., Nepsha V.I. Prirodnye i sinteticheskie almazy [Natural and Synthetic Diamonds]. Moscow, Nauka, 1986. 221 p. (In Russian)
3. Gu T., Wang W. Optical defects in milky type IaB diamonds. Diam. Relat. Mater., 2018, vol. 89, pp. 322–329. https://doi.org/10.1016/j.diamond.2018.09.010.
4. Sobolev E.V., Yur’eva O.P. Blue fluorescence systems in diamond. Sverkhtverd. Mater., 1990, no. 2, pp. 3–8. (In Russian)
5. Collins A.T., Kanda H, Kitawaki H. Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diam. Relat. Mater., 2000, vol. 9, no. 2, pp. 113–122. https://doi.org/10.1016/S0925-9635(00)00249-1.
6. Kononenko V.V. Laser-stimulated processes on the diamond surface. Extended Abstract of Dr. Sci. (Physics and Mathematics) Diss. Moscow, 2019. 36 p. (In Russian)
7. Vins V.G., Eliseev A.P., Sarin V.A. Physical principles of modern methods for enhancing natural diamonds and gems. Dragotsennye Met. Dragocennye Kamni, 2009, no. 3(183), pp. 127–148. (In Russian)
8. Mashkovtsev R.I., Rakhmanova M.I., Zedgenizov D.A. Specific spectroscopic features of yellow cuboid diamonds from placers in the north-eastern Siberian Platform. J. Geosci., 2021, vol. 66, no. 2, pp. 117–126. https://doi.org/10.3190/jgeosci.323.
9. Alekseev A.G., Amosov V.N., Krasil’nikov A.V., Tugarinov S.N., Frunze V.V., Tsutskikh A.Yu. Transformation of GR1 defects in annealed natural type IIa diamonds. Tech. Phys. Lett., 2000, vol. 26, no. 6, pp. 496–498. https://doi.org/10.1134/1.1262889.
10. Gorobets B.S., Rogozhin A.A. Spektry lyuminestsentsii mineralov: Spravochnik [Luminescence Spectra of Minerals: A Handbook]. Moscow, VIMS, 2001. 316 p. (In Russian)
11. Sobolev E.V., Lisovain V.I. On the nature of physical properties of intermediate diamonds. Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 1, pp. 88–91. (In Russian)
12. Mita Y., Nisada Y., Suito K., Onodera A., Yazu S. Photochromism of H2 and H3 centres in synthetic type Ib diamonds. J. Phys: Condens. Matter, 1990, vol. 2, no. 43, pp. 8567–8574. https://doi.org/10.1088/0953-8984/2/43/002.
13. Phaal C. The absorption spectra and irradiation of plastically deformed diamond. Philos. Mag. – J. Theor. Exp. Appl. Phys., 1965, vol. 11, no. 110, pp. 369–378. https://doi.org/10.1080/14786436508221863.
14. Shiryaev A.A., Hutchison M.T., Dembo K.A., Dembo A.T., Iakoubovskii K., Klyuev Yu.A., Naletov A.M. High-temperature high-pressure annealing of diamond. Small-angle X-ray scattering and optical study. Phys. B: Condens. Matter, 2001, vols. 308–310, pp. 598–603. https://doi.org/10.1016/S0921-4526(01)00750-5.
15. Pant A., Gupta C., Senkalla K., Felsted G., Xia X., Spohn T., Dunham S.T., Jelezko F., Pauzauskie P.J. Reduced photothermal heating in diamonds enriched with H3 point defects. J. Appl. Phys., 2022, vol. 131, no. 23, art. 234401. https://doi.org/10.1063/5.0090661.
16. Kvasnitsa V.N., Zinchuk N.N., Koptil’ V.I. Tipomorfizm mikrokristallov almaza [Typomorphism of Diamond Microcrystals]. Moscow, “OOO Nedra-Biznestsentr”, 1999. 224 p. (In Russian)
17. Isaenko S.I. Spektroskopicheskie kharakteristiki almazov rossypi Ichet’yu (Srednii Timan) [Spectroscopic Characteristics of Diamonds from the Ichet’yu placer (Middle Timan)]. Syktyvkar, IG Komi NTs Ural. Otd. Ross. Akad. Nauk, 2016. 102 p. (In Russian)
18. Vasil’ev E.A., Kozlov A.V., Petrovskii V.A. Volume and surface distribution of radiation defect in natural diamonds. Zap. Gorn. Inst., 2018, vol. 230, no. 107, pp. 107–115. https://doi.org/10.25515/pmi.2018.2.107. (In Russian)
19. Nasdala L., Grambole D., Wildner M., Gigler A.M., Hainschwang T., Zaitsev A.M., Harris J.W., Milledge J., Schulze D.J., Hofmeister W., Balmer W.A. Radio-colouration of diamond: A spectroscopic study. Contrib. Mineral. Petrol., 2013, vol. 165, no. 5, pp. 843–861. https://doi.org/10.1007/s00410-012-0838-1.
20. Walker J. Optical absorption and luminescence in diamond. Rep. Prog. Phys., 1979, vol. 42, no. 10, pp. 1605–1659. https://doi.org/10.1088/0034-4885/42/10/001.
21. Hizhnyakov V., Kaasik H., Sildos I. Zero-phonon lines: The effect of a strong softening of elastic springs in the excited state. Phys. Status Solidi B, 2002, vol. 234, no. 2, pp. 644–653. https://doi.org/10.1002/1521-3951(200211)234:2<644::AID-PSSB644>3.0.CO;2-E.
22. Gololobov V.M. Nanoablation of single-crystal diamonds by femtosecond laser pulses. Cand. Sci. (Physics and Mathematics) Diss. Moscow, 2019. 106 p. (In Russian)
Review
For citations:
Isaenko S.I. Laser-induced transformation of H3 defects in natural diamonds. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(1):116-129. (In Russ.) https://doi.org/10.26907/2542-064X.2025.1.116-129

















