Assessment of the Effect of Mineral Acids and Aluminum on the Intensity of Spectral Lines of Rare Earth Elements in Atomic Emission Spectroscopy of Microwave-Induced Plasma
https://doi.org/10.26907/2542-064X.2023.1.68-82
Abstract
To obtain reliable results in the quantitative determination of rare earth elements (REE) by atomic emission spectroscopy, it is particularly important to take into account the matrix effects of the macrocomponents contained in the analyzed solutions. Analytes obtained by liquid-phase and autoclave opening of geological samples of REE ores and minerals contain significant amounts of strong mineral acids used as reagents and such macrocomponents of the samples as aluminum (aluminosilicates) and phosphorus (phosphates in apatites). Here, we studied the effects of hydrochloric, nitric, sulfuric, and orthophosphoric acids and aluminum on the relative intensity of the ion analytical lines of La, Ce, Nd, Sm, Gd, Tb, Er, and Yb in atomic emission spectroscopy of the microwave-induced plasma (AES MIP). With an increase in the acid concentration from 0 to 1 mol/L, the relative intensity of the spectral lines of all investigated REE decreased monotonically by 10–20%. The depressing effect of aluminum, which is due to a decrease in the degree of ionization of REE atoms, was much stronger and reached 70%. It was shown that the AES MIP method is not inferior to atomic emission spectroscopy of inductively coupled argon plasma in terms of the detection limits of lanthanum, cerium, gadolinium, and erbium.
Keywords
About the Authors
E. O. ChibirevRussian Federation
Kazan, 420008
E. K. Konkova
Russian Federation
Kazan, 420008
A. R. Garifzyanov
Russian Federation
Kazan, 420008
References
1. Thakur S.N. Chapter 2 – Atomic emission spectroscopy // Singh J.P., Thakur S.N. (Eds.) Laser-Induced Breakdown Spectroscopy. – Elsevier, 2020. – P. 23–40. – doi: 10.1016/b978-0-12-818829-3.00002-2.
2. Djingova R., Ivanova J. Determination of rare earth elements in soils and sediments by inductively coupled plasma atomic emission spectrometry after cation-exchange separation // Talanta. – 2002. – V. 57, No 5. – P. 821–829. – doi: 10.1016/S0039-9140(02)00126-1.
3. Fernández-Sánchez M.L. Atomic emission spectrometry | Inductively coupled plasma // Worsfold P., Poole C., Townshend A., Miró M. (Eds.) Encyclopedia of Analytical Science. – Acad. Press, 2018. – P. 169–176. – doi: 10.1016/B978-0-12-409547-2.14542-1.
4. Olesik J.W. 10.9 – ICP-OES: Inductively coupled plasma-optical emission spectroscopy // Brundle C.R., Evans Ch.A., Wilson Sh. (Eds.) Encyclopedia of Materials Characterization. – Butterworth-Heinemann, 1992. – P. 633–644. – doi: 10.1016/b978-0-08-052360-6.50059-x.
5. Ganjali M.R., Gupta V. K., Faridbod F., Norouzi P. Chapter 6 – Spectrometric determination of lanthanides series // Ganjali M.R., Gupta V.K., Faridbod F., Norouzi P. (Eds.) Lanthanides Series Determination by Various Analytical Methods. – Elsevier, 2016. – P. 209–358. – doi: 10.1016/B978-0-12-804704-0.00006-2.
6. Sesi N.N., Hieftje G.M. Studies into interelement matrix effect in inductively coupled plasma spectrometry // Spectrochim. Acta, Part B. – 1996. – V. 51, No 13. – P. 1601– 1628. – doi: 10.1016/S0584-8547(96)01560-1.
7. Pupyshev A.A., Danilova D.A. Developing a model of thermochemical processes for the method of atomic emission spectrometry with inductively coupled plasma. Part 1. Non-spectral matrix interference. Anal. Kontrol’, 2001, no. 2, pp. 112–136. (In Russian)
8. Mandiwana K.L. Physical interferences by mineral acids in ICP-OES. J. Anal. At. Spectrom., 2000, vol. 15, no. 10, pp. 1405–1407. doi: 10.1039/A910176O.
9. Pupyshev A.A., Danilova D. A. The use of atomic emission spectroscopy with inductively coupled plasma for the analysis of materials and products of ferrous metallurgy. Anal. Kontrol’, 2007, nos. 2–3, pp. 131–181. (In Russian)
10. Pupyshev A.A. Spectral interference and their correction in atomic emission spectral analysis. Zavod. Lab. Diagn. Mater., 2019, vol. 81, no. 1(II), pp. 15–32. doi: 10.26896/1028-6861-2019-85-1-II-15-32.
11. Maeda T., Wagatsuma K. Emission characteristics of high-powered microwave induced plasma optical emission spectrometry by using nitrogen–oxygen mixture gas // Microchem. J. – 2004. – V. 76, No 1–2. – P. 53–60. – doi: 10.1016/j.microc.2003.11.010.
12. Karlsson S., Sjöberg V., Ogar A. Comparison of MP AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus) // Talanta. – 2015. – V. 135. – P. 124–132. – doi: 10.1016/j.talanta.2014.12.015.
13. Jankowski K.J., Reszke E. Microwave Induced Plasma Analytical Spectrometry. – R. Soc. Chem., 2011. – 264 p. – doi: 10.1039/9781849732147.
14. Jankowski K.J. Atomic emission spectrometry | Microwave plasma sources // Worsfold P., Poole C., Townshend A., Miró M. (Eds.) Encyclopedia of Analytical Science. – Acad. Press, 2019. – P. 187–193. – doi: 10.1016/B978-0-12-409547-2.14378-1.
15. Jankowski K.J., Dreger M. Study of an effect of easily ionizable elements on the excitation of 35 elements in an Ar-MIP system coupled with solution nebulization // J. Anal. At. Spectrom. – 2000. – V. 15, No 3. – P. 269–274. – doi: 10.1039/a906941k.
16. Fischer P.T., Ellgren A.J. Analysis of rare earth-containing metallurgical samples by inductively coupled plasma-atomic emission spectrometry. // Spectrochim. Acta, Part B. – 1983. – V. 38, No 1–2. – P. 309–316. – doi: 10.1016/0584-8547(83)80129-3.
17. Zhang Z., Wagatsuma K. Matrix effects of easily ionizable elements and nitric acid in high-power microwave-induced nitrogen plasma atomic emission spectrometry // Spectrochim. Acta, Part B. – 2002. – V. 57, No 8. – P. 1247–1257. – doi: 10.1016/s05848547(02)00049-6.
18. Wall F. Rare earth elements // Alderton D., Elias S.A. (Eds.) Encyclopedia of Geology. – Acad. Press, 2020. – P. 680–693. – doi: 10.1016/b978-0-08-102908-4.00101-6.
19. Davris P., Balomenos E., Panias D., Paspaliaris I. Chapter 12 – Leaching rare earth elements from bauxite residue using Brønsted acidic ionic liquids // De Lima I.B., Filho W.L. (Eds.) Rare Earths Industry. – Elsevier, 2016. – P. 183–197. – doi: 10.1016/B978-0-12-8023280.00012-7.
20. Demol J., Ho E., Senanayake G. Sulfuric acid baking and leaching of rare earth elements, thorium and phosphate from a monazite concentrate: Effect of bake temperature from 200 to 800 °C // Hydrometallurgy. – 2018. – V. 179. – P. 254–267. – doi: 10.1016/j.hydromet.2018.06.002.
21. Bandara A.M.T.S., Senanayake G. Dissolution of calcium, phosphate, fluoride and rare earth elements (REEs) from a disc of natural fluorapatite mineral (FAP) in perchloric, hydrochloric, nitric, sulphuric and phosphoric acid solutions: A kinetic model and comparative batch leaching of major and minor elements from FAP and RE-FAP concentrate // Hydrometallurgy. – 2018. – V. 184. – P. 218–236. – doi: 10.1016/j.hydromet.2018.09.002.
Review
For citations:
Chibirev E.O., Konkova E.K., Garifzyanov A.R. Assessment of the Effect of Mineral Acids and Aluminum on the Intensity of Spectral Lines of Rare Earth Elements in Atomic Emission Spectroscopy of Microwave-Induced Plasma. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2023;165(1):68–82. (In Russ.) https://doi.org/10.26907/2542-064X.2023.1.68-82