Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Effect of trolox, riboxin (inosine), and indralin on X-ray induced oxidative stress in A549 cells

https://doi.org/10.26907/2542-064X.2025.1.66-86

Abstract

Using dichlorofluorescein (DCF) fluorescence intensity, the oxidative stress in human lung adenocarcinoma A549 cells pretreated with trolox, riboxin (inosine), tartaric acid, and indralin was measured 2 h before, during, and 1 h after the X-ray radiation at a dose of 8 Gy. Trolox at concentrations up to 1 mM significantly reduced the oxidative stress from radiation exposure, with a less pronounced effect at 2 mM. Riboxin also suppressed the oxidative stress, though to a lesser extent, at micromolar concentrations, but showed no significant antioxidant activity at 1 and 2 mM, which can be attributed to the potential pro-oxidative impact of many antioxidants at high concentrations. Tartaric acid possessed antioxidant properties at micromolar concentrations. Of particular interest is that indralin at 1.9 mM increased the level of oxidative stress in the irradiated cells. Therefore, the effects of indralin, known for its radioprotective action due to the properties of a signaling molecule causing tissue hypoxia, can differ at cellular and organismal levels.

About the Author

L. A. Romodin
State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
Russian Federation

Leonid A. Romodin, Cand. Sci. (Biology), Senior Researcher

Moscow


Competing Interests:

The author declares no conflicts of interest.



References

1. Kuzin A.M. Strukturno-metabolicheskaya teoriya v radiobiologii [Structural and Metabolic Theory in Radiobiology]. Moscow, Nauka, 1986. 282 p. (In Russian)

2. Pinthus J.H., Bryskin I., Trachtenberg J., Luz J.-P., Singh G., Fridman E., Wilson B.C. Androgen induces adaptation to oxidative stress in prostate cancer: Implications for treatment with radiation therapy. Neoplasia, 2007, vol. 9, no. 1, pp. 68–80. https://doi.org/10.1593/neo.06739.

3. Kim A., Yonemoto C., Feliciano C.P., Shashni B., Nagasaki Y. Antioxidant nanomedicine significantly enhances the survival benefit of radiation cancer therapy by mitigating oxidative stress-induced side effects. Small, 2021, vol. 17, no. 21, art. e2008210. https://doi.org/10.1002/smll.202008210.

4. Nuszkiewicz J., Woźniak A., Szewczyk-Golec K. Ionizing radiation as a source of oxidative stress – the protective role of melatonin and vitamin D. Int. J. Mol. Sci., 2020, vol. 21, no. 16, art. 5804. https://doi.org/10.3390/ijms21165804.

5. Vasin M.V. Protivoluchevye lekarstvennye sredstva [Anti-Radiation Drugs]. Moscow, Kniga-Memuar, 2020. 239 p. (In Russian)

6. Vasin M.V. Classification of radioprotective agents as the reflection of the current state and prospects for the development of radiation pharmacology. Radiats. Biol. Radioekol., 2013, vol. 53, no. 5, pp. 459–467. https://doi.org/10.7868/S0869803113050160. (In Russian)

7. Jókay I., Kelemenics K., Gyuris Á., Minárovits J. S-methylthio-cysteine and cystamine are potent stimulators of thiol production and glutathione synthesis. Life Sci., 1998, vol. 62, no. 2, pp. PL/27–PL/33. https://doi.org/10.1016/s0024-3205(97)01066-7.

8. Rozhdestvensky L.M. Classification of radioprotective agents based on their pharmacological effects and association with radiation injury progression. Radiats. Biol. Radioekol., 2017, vol. 57, no. 2, pp. 117–135. https://doi.org/10.7868/S0869803117020126. (In Russian)

9. Ponomarev D.B., Remizov D.V., Kondakov A.Yu., Drachyov I.S., Tikhomirov P.V., Kudryashov V.S. Experimental study of the effectiveness of the naphazoline and co-administration of filgrastim in combined radiation injury. Biol. Bull., 2023, vol. 50, no. 11, pp. 3054–3060. https://doi.org/10.1134/S1062359023110183.

10. Chou A.-K., Chiu C.-C., Zhu G.-C., Wang J.-J., Chen Y.-W., Hung C.-H. Naphazoline and oxymetazoline are superior to epinephrine in enhancing the cutaneous analgesia of lidocaine in rats. Fundam. Clin. Pharmacol., 2023, vol. 37, no. 2, pp. 296–304. https://doi.org/10.1111/fcp.12853.

11. Filimonova M.V., Shevchenko L.I., Makarchuk V.M., Saburova A.S., Soldatova O.V., Shitova A.A., Kosachenko A.O., Rybachuk V.A., Saburov V.O., Filimonov A.S. Radioprotective effects of T1082 – phosphate 1-isobutanoyl-2-isopropylisothiurea in comparison with its analogue T1023. Radiats. Biol. Radioekol., 2021, vol. 61, no. 6, pp. 632–644. https://doi.org/10.31857/S0869803121060059. (In Russian)

12. Rozhdestvensky L.M. Challenges in the design of Russian radiation protection means in the crisis period: The search for key directions of development. Biol. Bull., 2020, vol. 47, no. 12, pp. 1659–1668. https://doi.org/10.1134/S1062359020120080.

13. Shivappa P., Bernhardt G.V. Natural radioprotectors on current and future perspectives: A mini-review. J. Pharm. BioAllied Sci., 2022, vol. 14, no. 2, pp. 57–71. https://doi.org/10.4103/jpbs.jpbs_502_21.

14. Raj S., Manchanda R., Bhandari M., Alam M.S. Review on natural bioactive products as radioprotective therapeutics: Present and past perspective. Curr. Pharm. Biotechnol., 2022, vol. 23, no. 14, pp. 1721–1738. https://doi.org/10.2174/1389201023666220110104645.

15. Jafarpour S.M., Safaei M., Mohseni M., Salimian M., Aliasgharzadeh A., Farhood B. The radioprotective effects of curcumin and trehalose against genetic damage caused by I-131. Indian J. Nucl. Med., 2018, vol. 33, no. 2, pp. 99–104. https://doi.org/10.4103/ijnm.IJNM_158_17.

16. Kolivand S., Amini P., Saffar H., Rezapoor S., Motevaseli E., Najafi M., Nouruzi F., Shabeeb D., Musa A.E. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr. Radiopharm., 2019, vol. 12, no. 1, pp. 23–28. https://doi.org/10.2174/1874471011666180831101459.

17. Nosrati H., Danafar H., Rezaeejam H., Gholipour N., Rahimi-Nasrabadi M. Evaluation radioprotective effect of curcumin conjugated albumin nanoparticles. Bioorg. Chem., 2020, vol. 100, art. 103891. https://doi.org/10.1016/j.bioorg.2020.103891.

18. González E., Cruces M.P., Pimentel E., Sánchez P. Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environ. Toxicol. Pharmacol., 2018, vol. 62, pp. 210–214. https://doi.org/10.1016/j.etap.2018.07.015.

19. Mathew D., Nair C.K.K., Jacob J.A., Biswas N., Mukherjee T., Kapoor S., Kagiya T.V. Ascorbic acid monoglucoside as antioxidant and radioprotector. J. Radiat. Res., 2007, vol. 48, no. 5, pp. 369–376. https://doi.org/10.1269/jrr.07007.

20. Pozdeev A.V., Lysenko N.P. Enhancing the radiation resistance in mammalian bodies using chlorophyll supplements under the conditions of radioactive contamination. Izv. Mezhdunar. Akad. Agrar. Obraz., 2018, no. 42–2, pp. 60–62. (In Russian)

21. Morales-Ramírez P., Mendiola-Cruz M.T. In vivo radioprotective effect of chlorophyllin on sister chromatid exchange induction in murine spermatogonial cells. Mutat. Res., Genet. Toxicol., 1995, vol. 344, nos. 1–2, pp. 73–78. https://doi.org/10.1016/0165-1218(95)90041-1.

22. Morales-Ramírez P., García-Rodríguez M.C. In vivo effect of chlorophyllin on γ-ray-induced sister chromatid exchange in murine bone marrow cells. Mutat. Res., Genet. Toxicol., 1994, vol. 320, no. 4, pp. 329–334. https://doi.org/10.1016/0165-1218(94)90085-x.

23. Kumar S.S., Shankar B., Sainis K.B. Effect of chlorophyllin against oxidative stress in splenic lymphocytes in vitro and in vivo. Biochim. Biophys. Acta., Gen. Subj., 2004, vol. 1672, no. 2, pp. 100–111. https://doi.org/10.1016/j.bbagen.2004.03.002.

24. Romodin L.A. Chlorophyllin inhibits lipid peroxidation triggered by the Fenton reaction. Biophysics, 2024, vol. 69, no. 1, pp. 1–5. https://doi.org/10.1134/S0006350924700015.

25. Zernii E.Yu., Golovastova M.O., Baksheeva V.E., Kabanova E.I., Ishutina I.E., Gancharova O.S., Gusev A.E., Savchenko M.S., Loboda A.P., Sotnikova L.F., Zamyatnin A.A., Jr., Philippov P.P., Senin I.I. Alterations in tear biochemistry associated with postanesthetic chronic dry eye syndrome. Biochemistry, 2016, vol. 81, no. 12, pp. 1549–1557. https://doi.org/10.1134/S0006297916120166n.

26. Meclain D.E., Kalinich J.F., Ramakrishnan N. Trolox inhibits apoptosis in irradiated MOLT-4 lympho-cytes. FASEB J., 1995, vol. 9, no. 13, pp. 1345–1354. https://doi.org/10.1096/fasebj.9.13.7557025.

27. Ding S.-S., Sun P., Zhang Z., Liu X., Tian H., Huo Y.-W., Wang L.-R., Han Y., Xing J.-P. Moderate dose of trolox preventing the deleterious effects of Wi-Fi radiation on spermatozoa in vitro through reduction of oxidative stress damage. Chin. Med. J., 2018, vol. 131, no. 4, pp. 402–412. https://doi.org/10.4103/0366-6999.225045.

28. Srinivasan S., Torres A.G., Ribas de Pouplana L. Inosine in biology and disease. Genes, 2021, vol. 12, no. 4, art. 600. https://doi.org/10.3390/genes12040600.

29. Niemann B., Haufs-Brusberg S., Puetz L., Feickert M., Jaeckstein M.Y., Hoffmann A., Zurkovic J., Heine M., Trautmann E.-M., Müller C.E., Tönjes A., Schlein C., Jafari A., Eltzschig H.K., Gnad T., Blüher M., Krahmer N., Kovacs P., Heeren J., Pfeifer A. Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature, 2022, vol. 609, no. 7926, pp. 361–368. https://doi.org/10.1038/s41586-022-05041-0.

30. Pfeifer A., Mikhael M., Niemann B. Inosine: Novel activator of brown adipose tissue and energy homeostasis. Trends Cell Biol., 2024, vol. 34, no. 1, pp. 72–82. https://doi.org/10.1016/j.tcb.2023.04.007.

31. Vasin M.V., Ushakov I.B. Potential ways to increase body resistance to damaging action of ionizing radiation with radiomitigators. Biol. Bull. Rev., 2019, vol. 9, no. 6, pp. 503–519. https://doi.org/10.1134/S2079086419060082.

32. Gudkov S.V., Shtarkman I.N., Chernikov A.V., Usacheva A.M., Bruskov V.I. Guanosine and inosine (riboxin) eliminate the long-lived protein radicals induced X-ray radiation. Dokl. Biochem. Biophys., 2007, vol. 413, no. 1, pp. 50–53. https://doi.org/10.1134/S1607672907020032.

33. Gudkov S.V., Gudkova O.Yu., Shtarkman I.N., Gapeev A.B., Chemeris N.K., Bruskov V.I. Guanosine and inosine as natural gene protectors for mice blood cells exposed to X-rays. Radiats. Biol. Radioekol., 2006, vol. 46, no. 6, pp. 713–718. (In Russian)

34. Il’in L.A., Rudnyi N.M., Suvorov N.N., Chernov G.A., Antipov V.V., Vasin M.V., Davydov B.I., Mikhailov P.P. Indralin – radioprotektor ekstrennogo deistviya. Protivoluchevye svoistva, farmakologiya, mekhanizm deistviya, klinika [Indralin as Emergency Radioprotector. Antiradiation Properties, Pharmacology, Mechanism of Action, and Clinical Characteristics]. Moscow, Vtoraya Tip. Minist. Zdravookhr. Ross. Fed., 1994. 436 p. (In Russian)

35. Vasin M.V., Antipov V.V., Komarova S.N., Semenova L.A., Galkin A.A. Radioprotective properties of indralin combined with cystamine and mexamine. Biophysics, 2011, vol. 56, no. 5, pp. 914–916. https://doi.org/10.1134/S000635091105023X.

36. Eliseev V.V., Marikhina B.L. Comparative study of antihypoxic properties of some nucleosides and nucleotides. Pharm. Chem. J., 1986, vol. 20, no. 3, pp. 160–162. https://doi.org/10.1007/BF00758559.

37. Romodin L.A., Nikitenko O.V., Bychkova T.M., Zrilova Yu.A., Rodionova E.D., Bocharov D.A. Assessment of the acute toxicity of chlorophyllin and trolox for the possibility of studying their radioprotective properties. Bull. Exp. Biol. Med., 2024, vol. 177, no. 1, pp. 44–46. https://doi.org/10.1007/s10517-024-06128-6.

38. Sycheva L.P., Lisina N.I., Shchegoleva R.A., Rozhdestvensky L.M. Antimutagenic effect of antiradiation drugs in an experiment on mice. Biol. Bull., 2020, vol. 47, no. 11, pp. 1536–1540. https://doi.org/10.1134/S106235902011014X.

39. Ortega A., Gómez M., Domingo J.L., Corbella J. The removal of strontium from the mouse by chelating agents. Arch. Environ. Contam. Toxicol., 1989, vol. 18, no. 4, pp. 612–616. https://doi.org/10.1007/BF01055029.

40. Rani S., Sahoo R.K., Kumar V., Chaurasiya A., Kulkarni O., Mahale A., Katke S., Kuche K., Yadav V., Jain S., Nakhate K.T., Ajazuddin, Gupta U. N -2-hydroxypropylmethacrylamide–polycaprolactone polymeric micelles in co-delivery of proteasome inhibitor and polyphenol: Exploration of synergism or antagonism. Mol. Pharm., 2023, vol. 20, no. 1, pp. 524–544. https://doi.org/10.1021/acs.molpharmaceut.2c00752.

41. Emami F., Aliomrani M., Tangestaninejad S., Kazemian H., Moradi M., Rostami M. Copper-curcuminbipyridine dicarboxylate complexes as anticancer candidates. Chem. Biodiversity, 2022, vol. 19, no. 10, art. e202200202. https://doi.org/10.1002/cbdv.202200202.

42. Shanmugasundaram D., Roza J.M. Assessment of anti-inflammatory and antioxidant activity of quercetin–rutin blend (SophorOx™) – an invitro cell based assay. J. Complementary Integr. Med., 2022, vol. 19, no. 3, pp. 637–644. https://doi.org/10.1515/jcim-2021-0568.

43. Gill M.E., Kohler H., Peters A.H.F.M. Isolation of mouse germ cells by FACS using Hoechst 33342 and SYTO16 double staining. In: Barchi M., De Felici M. (Eds.) Germ Cell Development: Methods and Protocols. Ser.: Methods in Molecular Biology. V. 2770. New York, NY, Humana Press, 2024. pp. 53–62. https://doi.org/10.1007/978-1-0716-3698-5_5.

44. Vasin M.V., Ilyin L.A., Ushakov I.B. The phenomenon of radiation protection of large animals (dogs) with indralin and its extrapolation to humans. Med. Radiobiol. Radiats. Bezop., 2022, vol. 67, no. 3, pp. 5–12. https://doi.org/10.33266/1024-6177-2022-67-3-5-12. (In Russian)

45. Vasin M.V. B-190 (indralin) in light of the history of the formation of ideas about the mechanism of action of radioprotectors. Biol. Bull., 2021, vol. 48, no. 11, pp. 2045–2059. https://doi.org/10.1134/S1062359021110091.

46. Romodin L.A., Yashkina E.I., Moskovskij A.A. Fluorimetric evaluation of the effect of riboxin, copper chlorophyllin, trolox and the soluble form of indralin on the growth properties of A549 cells in culture. Med. Radiobiol. Radiats. Bezop., 2024, vol. 69, no. 3, pp. 26–34. https://doi.org/10.33266/1024-6177-2024-69-3-26-34. (In Russian)

47. Romodin L.A., Vladimirov Yu.A. Dihydroquercetin and trolox as inhibitors of lipoperoxidase activity of the complex of cytochrome C with cardiolipin. Vestn. Med. Tekhnol., 2021, vol. 28, no. 1, pp. 69–71. https://doi.org/10.24412/1609-2163-2021-1-69-71. (In Russian)

48. Burlakova E.B., Alesenko A.V., Molochkina A.V., Pal’mina N.P., Khrapova N.G. Bioantioksidanty v luchevom porazhenii i zlokachestvennom roste [Bioantioxidants in Radiation Damage and Malignant Growth]. Moscow, Nauka, 1975. 213 p. (In Russian)

49. Skulachev V. P. What is “phenoptosis” and how to fight it? Biochemistry, 2012, vol. 77, no. 7, pp. 689–706. https://doi.org/10.1134/S0006297912070012.

50. Mendes-da-Silva R.F., Lopes-de-Morais A.A.C., Bandim-da-Silva M.E., Cavalcanti G. de A., Rodrigues A.R.O., Andrade-da-Costa B.L. da S., Guedes R.C.A. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: A cortical spreading depression and malondialdehyde analysis. Neuropharmacology, 2014, vol. 86, pp. 155–160. https://doi.org/10.1016/j.neuropharm.2014.06.027.

51. Otanwa O.O., Ndidi U.S., Ibrahim A.B., Balogun E.O., Anigo K.M. Prooxidant effects of high dose ascorbic acid administration on biochemical, haematological and histological changes in Cavia porcellus (Guinea pigs): A Guinea pig experimental model. Pan Afr. Med. J., 2023, vol. 46, art. 18. https://doi.org/10.11604/pamj.2023.46.18.36098.

52. Giordano M.E., Caricato R., Lionetto M.G. Concentration dependence of the antioxidant and prooxidant activity of Trolox in HeLa cells: Involvement in the induction of apoptotic volume decrease. Antioxidants, 2020, vol. 9, no. 11, art. 1058. https://doi.org/10.3390/antiox9111058.

53. Wattamwar P.P., Hardas S.S., Butterfield D.A., Anderson K.W., Dziubla T.D. Tuning of the prooxidant and antioxidant activity of trolox through the controlled release from biodegradable poly(trolox ester) polymers. J. Biomed. Mater. Res., Pt. A, 2011, vol. 99A, no. 2, pp. 184–191. https://doi.org/10.1002/jbm.a.33174.

54. Li X., Cheng Y., Yang Z., Ji Q., Huan M., Ye W., Liu M., Zhang B., Liu D., Zhou S. Gliomatargeted oxaliplatin/ferritin clathrate reversing the immunosuppressive microenvironment through hijacking Fe2+ and boosting Fenton reaction. J. Nanobiotechnol., 2024, vol. 22, no. 1, art. 93. https://doi.org/10.1186/s12951-024-02376-w.

55. Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biologicheskikh membranakh [Lipid Peroxidation in Biological Membranes]. Moscow, Nauka, 1972. 252 p. (In Russian)

56. Kabakchi S.A., Arkhipov O.P., Lukashenko M.L. Specific features of the radiolysis of water and aqueous solutions of H2 and O2 by mixed n,γ-radiation with a high portion of the neutron component. High Energy Chem., 2013, vol. 47, no. 4, pp. 147–151. https://doi.org/10.1134/S0018143913040061.

57. Ruhal P., Dhingra D. Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology, 2018, vol. 26, no. 5, pp. 1317–1329. https://doi.org/10.1007/s10787-018-0476-y.

58. Hou B., Xu Z.-W., Yang C.-W., Gao Y., Zhao S.-F., Zhang C.-G. Protective effects of inosine on mice subjected to lethal total-body ionizing irradiation. J. Radiat. Res., 2007, vol. 48, no. 1, pp. 57–62. https://doi.org/10.1269/jrr.06067.

59. Vernigorova L.A., Zhorova E.S., Popov B.A., Parfenova I.M. Combined prophylactic administration of riboxin and algisorbum at 239Pu intake into gastrointestinal tract of rats. Radiats. Biol. Radioekol., 2005, vol. 45, no. 2, pp. 201–206. (In Russian)

60. Thebault S., Roudbaraki M., Sydorenko V., Shuba Y., Lemonnier L., Slomianny C., Dewailly E., Bonnal J.-L., Mauroy B., Skryma R., Prevarskaya N. α1-Adrenergic receptors activate Ca2+- permeable cationic channels in prostate cancer epithelial cells. J. Clin. Invest., 2003, vol. 111, no. 11, pp. 1691–1701. https://doi.org/10.1172/JCI16293.

61. Patel M., Li Q.-Y., Chang L.-Y., Crapo J., Liang L.-P. Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J. Neurochem., 2005, vol. 92, no. 1, pp. 123–131. https://doi.org/10.1111/j.1471-4159.2004.02838.x.

62. Hu Y., Xu Z., Pan Q., Ma L. Casein kinase 1 gamma regulates oxidative stress response via interacting with the NADPH dual oxidase complex. PLoS Genet., 2023, vol. 19, no. 4, art. e1010740. https://doi.org/10.1371/journal.pgen.1010740.

63. Chen Y., Zou Z., Găman M.-A., Xu L., Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discovery, 2023, vol. 9, no. 1, art. 208. https://doi.org/10.1038/s41420-023-01528-5.

64. Zielonka J., Kalyanaraman B. “ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis” – a critical commentary. Free Radical Biol. Med., 2008, vol. 45, no. 9, pp. 1217–1219. https://doi.org/10.1016/j.freeradbiomed.2008.07.025.

65. Kalyanaraman B., Darley-Usmar V., Davies K.J.A., Dennery P.A., Forman H.J., Grisham M.B., Mann G.E., Moore K., Roberts L.J. 2nd, Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radical Biol. Med., 2012, vol. 52, no. 1, pp. 1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030.

66. Singh V.K., Seed T.M. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin. Drug Saf., 2019, vol. 18, no. 11, pp. 1077–1090. https://doi.org/10.1080/14740338.2019.1666104.

67. Sritharan S., Sivalingam N. Curcumin induced apoptosis is mediated through oxidative stress in mutated p53 and wild type p53 colon adenocarcinoma cell lines. J. Biochem. Mol. Toxicol., 2021, vol. 35, no. 1, art. e22616. https://doi.org/10.1002/jbt.22616.


Review

For citations:


Romodin L.A. Effect of trolox, riboxin (inosine), and indralin on X-ray induced oxidative stress in A549 cells. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(1):66-86. (In Russ.) https://doi.org/10.26907/2542-064X.2025.1.66-86

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)