Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Stabilization of Zn(IV) and N12 backbone in Zn(N12): A quantum-chemical study by DFT method

https://doi.org/10.26907/2542-064X.2025.1.24-36

Abstract

The potential existence of a zinc–nitrogen compound with Zn : N = 1 : 12, a ratio previously unknown for these elements, was shown using three versions of density functional theory (DFT): DFT M06/TZVP, DFT B3PW91/TZVP, and DFT OPBE/TZVP. Its structural parameters were determined: the group of ZnN4 atoms has a tetragonal-pyramidal geometry with a significant (exceeding 60°) deviation from coplanarity, and the bond lengths between the nitrogen atoms and the zinc atom exhibit slight variations. The group of N4 atoms is also non-coplanar, and the non-bond angles in it, formed by three neighboring atoms, deviate very significantly from 90°. A similar non-coplanarity occurs in the four five-membered rings, each containing the metal atom and four nitrogen atoms. The thermodynamic parameters and NBO values were calculated. The results obtained using the above three quantum-chemical methods are in good agreement.

About the Authors

D. V. Chachkov
Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences – Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of National Research Center “Kurchatov Institute”
Russian Federation

Denis V. Chachkov, Cand. Sci. (Chemistry), Leading Researcher, Laboratory of Supercomputer Modeling, Department of Supercomputer Systems and Parallel Computing

Kazan


Competing Interests:

The authors declare no conflicts of interest.



O. V. Mikhailov
Kazan National Research Technological University
Russian Federation

Oleg V. Mikhailov, Dr. Sci. (Chemistry), Full Professor, Department of Analytical Chemistry, Certification and Quality Management

Kazan


Competing Interests:

The authors declare no conflicts of interest.



References

1. Chachkov D.V., Mikhailov O.V. A new chemical compound with an unusual ratio of number of carbon and nitrogen atoms – C(N12): Quantum-chemical modelling. RSC Adv., 2021, vol. 11, no. 57, pp. 35974–35981. http://doi.org/10.1039/d1ra07549g.

2. Mikhailov O.V., Chachkov D.V. Twelve-nitrogen-atom cyclic structure stabilized by 3d-element atoms: Quantum chemical modeling. Int. J. Mol. Sci., 2022, vol. 23, no. 12, art. 6560. https://doi.org/10.3390/ijms23126560.

3. Klapötke T.M., Harcourt R.D. The interconversion of N12 to N8 and two equivalents of N2. J. Mol. Struct.: THEOCHEM, 2001, vol. 541, nos. 1–3, pp. 237–242. https://doi.org/10.1016/S0166-1280(00)00805-8.

4. Olah G.A., Prakash G.K.S., Rasul G. N6 2+ and N4 2+ dications and their N12 and N10 azido derivatives: DFT/GIAO-MP2 theoretical studies. J. Am. Chem. Soc., 2001, vol. 123, no. 14, pp. 3308–3310. https://doi.org/10.1021/ja002253y.

5. Li Q.S., Zhao J.F. Theoretical study of potential energy surfaces for N12 clusters. J. Phys. Chem. A, 2002, vol. 106, no. 21, pp. 5367–5372. https://doi.org/10.1021/jp020110n.

6. Bruney L.Y., Bledson T.M., Strout D.L. What makes an N12 cage stable? Inorg. Chem., 2003, vol. 42, no. 24, pp. 8117–8120. https://doi.org/10.1021/ic034696j.

7. Samartzis P.C., Wodtke A.M. All-nitrogen chemistry: How far are we from N60? Int. Rev. Phys. Chem., 2006, vol. 25, no. 4, pp. 527–552. https://doi.org/10.1080/01442350600879319.

8. Greschner M.J., Zhang M., Majumdar A., Liu H., Peng F., Tse J.S., Yao Y. A new allotrope of nitrogen as high-energy density material. J. Phys. Chem. A, 2016, vol. 120, no. 18, pp. 2920–2925. https://doi.org/10.1021/acs.jpca.6b01655.

9. Mikhailov O.V., Chachkov D.V. Molecular structures and thermodynamics of stable N4, N6 and N8 neutral poly-nitrogens according to data of QCISD(T)/TZVP method. Chem. Phys. Lett., 2020, vol. 753, art. 137594. https://doi.org/10.1016/j.cplett.2020.137594.

10. Mikhailov O.V. Molecular and electronic structures of neutral polynitrogens: Review on the theory and experiment in 21st century. Int. J. Mol. Sci., 2022, vol. 23, no. 5, art. 2841. https://doi.org/10.3390/ijms23052841.

11. Mikhailov O.V., Chachkov D.V. About of possibility of existence of Zn(IV) oxidation state in heteroligand complexes with porphyrazine, trans-di[benzo]porphyrazine, phthalocyanine, and oxo ligands: Quantum-chemical review. Comments Inorg. Chem., 2020, vol. 40, no. 3, pp. 107–115. https://doi.org/10.1080/02603594.2020.1718120.

12. Xu Y., Wang P., Lin Q., Lu M. A carbon-free inorganic–metal complex consisting of an all-nitrogen pentazole anion, a Zn(II) cation and H2O. Dalton Trans., 2017, vol. 46, no. 41, pp. 14088–14093. https://doi.org/10.1039/C7DT03231E.

13. Zhao J.G., Yang L.X., You S.J., Li F.Y., Jin C.Q., Liu J. Structural stability of Zn3N2 under high pressure. Phys. B, 2010, vol. 405, no. 7, pp. 1836–1838. https://doi.org/10.1016/j.physb.2010.01.057.

14. Ding Z., Gao P., Lu M., Wang G., Gong X. Solvent effects on the geometry, electronic structure, and bonding style of Zn(N5)2: A theoretical study. J. Chin. Chem. Soc., 2020, vol. 67, no. 2, pp. 235–241. https://doi.org/10.1002/jccs.201900205.

15. Shi X., Yao Z., Liu B. New high pressure phases of the Zn–N system. J. Phys. Chem. C, 2020, vol. 124, no. 7, pp. 4044–4049. https://doi.org/10.1021/acs.jpcc.0c00513.

16. Liu Z., Li D., Tian F., Duan D., Li H., Cui T. Moderate pressure stabilized pentazolate cyclo-N5 ¯ anion in Zn(N5)2 salt. Inorg. Chem., 2020, vol. 59, no. 12, pp. 8002–8012. https://doi.org/10.1021/acs.inorgchem.0c00097.

17. Laniel D., Aslandukova A.A., Aslandukov A.N., Fedotenko T., Chariton S., Glazyrin K., Prakapenka V.B., Dubrovinsky L.S., Dubrovinskaia N. High-pressure synthesis of the β-Zn3N2 nitride and the α-ZnN4 and β-ZnN4 polynitrogen compounds. Inorg. Chem., 2021, vol. 60, no. 19, pp. 14594– 14601. https://doi.org/10.1021/acs.inorgchem.1c01532.

18. Xin S., Du D., Wang F., Rui Q., Wang Q., Zhao X., Li J., Yang D., Zhu H., Wang X. An energetic phase of ZnN6 at ambient conditions. Phys. B, 2021, vol. 617, art. 413139. https://doi.org/10.1016/j.physb.2021.413139.

19. Schulz A., Villinger A. Binary zinc azides. Chem. – Eur. J., 2016, vol. 22, no. 6, pp. 2032–2038. https://doi.org/10.1002/chem.201504524.

20. Bresien J., Ott H., Rosenstengel K., Schulz A., Thiele P., Villinger A. Binary polyazides of zinc. Eur. J. Inorg. Chem., 2016, vol. 2016, no. 36, pp. 5594–5609. https://doi.org/10.1002/ejic.201601035.

21. Zhang Y., Huang X., Yao Y., Zhang Z., Tian F., Chen W., Chen S., Jiang S., Duan D., Cui T. Dirac nodalline semimetal zinc polynitride at high pressure. Phys. Rev. B, 2022, vol. 105, no. 12, art. 125120. https://doi.org/10.1103/PhysRevB.105.125120.

22. Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, vol. 120, no. 1, pp. 215–241. https://doi.org/10.1007/s00214-007-0310-x.

23. Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, vol. 38, no. 6, pp. 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098.

24. Perdew J.P., Burke K., Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B, 1996, vol. 54, no. 23, pp. 16533–16539. https://doi.org/10.1103/PhysRevB.54.16533.

25. Medvedev M.G., Bushmarinov I.S., Sun J., Perdew J.P., Lyssenko K.A. Density functional theory is straying from the path toward the exact functional. Science, 2017, vol. 355, no. 6320, P. 49–52. https://doi.org/10.1126/science.aah5975.

26. Mikhailov O.V., Chachkov D.V. Novel oxidation state – zinc(III) in chelate with 3,7,11,15-tetraazaporphine and one fluorine ligand: Quantum-chemical modeling. J. Porphyrins Phthalocyanines, 2019, vol. 23, no. 6, pp. 685–689. https://doi.org/10.1142/S1088424619500470.

27. Mikhailov O.V., Chachkov D.V. About possibility of stabilization of unusual copper(IV) oxidation state in complexes with porphyrazine and two fluorine ligands: Quantum-chemical design. Inorg. Chem. Commun., 2019, vol. 106, pp. 224–227. https://doi.org/10.1016/j.inoche.2019.05.025.

28. Mikhailov O.V., Chachkov D.V. DFT quantum-chemical modeling molecular structures of cobalt macrocyclic complexes with porphyrazine or its benzo-derivatives and two oxygen acido ligands. Int. J. Mol. Sci., 2020, vol. 21, no. 23, art. 9085. https://doi.org/10.3390/ijms21239085.

29. Hoe W.-M., Cohen A.J., Handy N.C. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett., 2001, vol. 341, nos. 3–4, pp. 319–328. https://doi.org/10.1016/S0009-2614(01)00581-4.

30. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.

31. Paulsen H., Duelund L., Winkler H., Toftlund H., Trautwein A.X. Free energy of spin-crossover complexes calculated with density functional methods. Inorg. Chem., 2001, vol. 40, no. 9, pp. 2201–2203. https://doi.org/10.1021/ic000954q.

32. Swart M., Groenhof A.R., Ehlers A.W., Lammertsma K. Validation of exchange-correlation functionals for spin states of iron complexes. J. Phys. Chem. A, 2004, vol. 108, no. 25, pp. 5479–5483. https://doi.org/10.1021/jp049043i.

33. Swart M., Ehlers A.W., Lammertsma K. Performance of the OPBE exchange-correlation functional. Mol. Phys., 2004, vol. 102, nos. 23–24, pp. 2467–2474. https://doi.org/10.1080/0026897042000275017.

34. Swart M. Metal–ligand bonding in metallocenes: Differentiation between spin state, electrostatic and covalent bonding. Inorg. Chim. Acta, 2007, vol. 360, no. 1, pp. 179–189. https://doi.org/10.1016/j.ica.2006.07.073.

35. Frisch M.J, Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li H., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.01. Wallingford, Gaussian, Inc., 2009.

36. Weinhold F., Landis C.R., Glendening E.D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem., 2016, vol. 35, no. 3, pp. 399–440. https://doi.org/10.1080/0144235X.2016.1192262.

37. Ochterski J.W. Thermochemistry in Gaussian. Wallingford, Gaussian, Inc., 2000.


Review

For citations:


Chachkov D.V., Mikhailov O.V. Stabilization of Zn(IV) and N12 backbone in Zn(N12): A quantum-chemical study by DFT method. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(1):24-36. (In Russ.) https://doi.org/10.26907/2542-064X.2025.1.24-36

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)