Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Self-Assembly of the Dipeptide L-Alanyl-L-Phenylalanine under the Action of Methanol Vapor with the Formation of Micro- and Nanostructures

https://doi.org/10.26907/2542-064X.2023.1.37-48

Abstract

The mechanism of self-assembly by short-chain peptides (oligopeptides) – the process by which their molecules spontaneously form an ordered structure – has received much attention recently. Selfassembling phenylalanine oligopeptides have been of particular interest due to their potential as an effective aid in the design of new functional materials. This paper considers the results of an SPM study on the ability of L-alanyl-L-phenylalanine to self-assemble into a thin film under the action of methanol vapor. The micro- and nanostructures that develop on the surface of amorphous films of this dipeptide were characterized. A method for monitoring the state of the surface of dipeptide films using atomic force spectroscopy was proposed. The results obtained contribute to the development of approaches for the controlled selfassembly of oligopeptides used to produce new biocompatible materials and environmentally friendly micro- and nanodevices that would help solve various problems in the medical, environmental, and energy fields.

About the Authors

A. S. Morozova
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences
Russian Federation

Kazan, 420029



E. O. Kudryavtseva
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan Federal University
Russian Federation

Kazan, 420029

Kazan, 420008



S. A. Ziganshina
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan Federal University
Russian Federation

Kazan, 420029

Kazan, 420008



M. A. Ziganshin
Kazan Federal University
Russian Federation

Kazan, 420008



A. A. Bukharaev
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences
Russian Federation

Kazan, 420029



References

1. Ekiz M.S., Cinar G., Khalily M.A., Guler M.O. Self-assembled peptide nanostructures for functional materials // Nanotechnology. – 2016. – V. 27, No 40. – Art. 402002. – doi: 10.1088/0957-4484/27/40/402002.

2. D’Orlyé F., Trapiella-Alfonso L., Lescot C., Pinvidic M., Doan B.T., Varenne A. Synthesis, characterization and evaluation of peptide nanostructures for biomedical applications // Molecules. – 2021. – V. 26, No 15. – Art. 4587. – doi: 10.3390/molecules26154587.

3. Liu N., Zhu L., Li Z., Liu W., Sun M., Zhou Z. In situ self-assembled peptide nanofibers for cancer theranostics // Biomater. Sci. – 2021. – V. 9. – P. 5457–5466. – doi: 10.1039/d1bm00782c.

4. Guo C., Luo Y., Zhou R., Wei G. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides // Nanoscale. – 2014. – V. 6, No 5. – P. 2800–2811. – doi: 10.1039/C3NR02505E.

5. Naskar J., Banerjee A. Concentration dependent transformation of oligopeptide based nanovesicles to nanotubes and an application of nanovesicles // Asian J. – 2009. – V. 4, No 12. – P. 1817–1823. – doi: 10.1002/asia.200900274.

6. Adler-Abramovich L., Gazit E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications // Chem. Soc. Rev. – 2014. – V. 43, No 20. – P. 6881–6893. – doi: 10.1039/C4CS00164H.

7. Yan X., Li J., Möhwald H. Self-assembly of hexagonal peptide microtubes and their optical waveguiding // Adv. Mater. – 2011. – V. 23, No 25. – P. 2796–2801. – doi: 10.1002/adma.201100353.

8. Adler-Abramovich L., Kol N., Yanai I., Barlam D., Shneck R.Z., Gazit E., Rousso I. Selfassembled organic nanostructures with metallic-like stiffness // Angew. Chem. – 2010. – V. 49, No 51. – P. 9939–9942. – doi: 10.1002/anie.201002037.

9. Ryan K., Beirne J.G., Redmond G., Kilpatrick J.I., Guyonnet J., Buchete N.V., Kholkin A.L., Rodriguez B.J. Nanoscale piezoelectric properties of self-assembled Fmoc-FF peptide fibrous networks // ACS Appl. Mater. Interfaces. – 2015. – V. 7, No 23. – P. 12702–12707. – doi: 10.1021/acsami.5b01251.

10. Fan T., Yu X., Shen B., Sun L. Peptide self-assembled nanostructures for drug delivery applications // J. Nanomater. – 2017. – V. 2017. – Art. 4562474. – doi: 10.1155/2017/4562474.

11. Habibi N., Kamaly N., Memic A., Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery // Nano Today. – 2016. – V. 11, No 1. – P. 41–60. – doi: 10.1016/j.nantod.2016.02.004.

12. Kim S., Kim J.H., Lee J.S., Park C.B. Beta-sheet-forming, self-assembled peptide nanomaterials towards optical, energy, and healthcare applications // Small. – 2015. – V. 11, No 30. – P. 3623–3640. – doi: 10.1002/smll.201500169.

13. Fan Z., Sun L., Huang Y., Wang Y., Zhang M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release // Nat. Nanotechnol. – 2016. – V. 11, No 4. – P. 388–394. – doi: 10.1038/nnano.2015.312.

14. Tao K., Makam P., Aizen R., Gazit E. Self-assembling peptide semiconductors // Science. – 2017. – V. 358, No 6365. – Art. eaam9756. – doi: 10.1126/science.aam9756.

15. Yuran S., Razvag Y., Reches M. Coassembly of aromatic dipeptides into biomolecular necklaces // ACS Nano. – 2012. – V. 6, No 11. – P. 9559–9566. – doi: 10.1021/nn302983e.

16. Ryu J., Park Ch.B. High-temperature self-assembly of peptides into vertically wellaligned nanowires by aniline vapor // Adv. Mater. – 2008. – V. 20, No 19. – P. 3754– 3758. – doi: 10.1002/adma.200800364.

17. Morozova A.S., Ziganshina S.A., Bukharaev A.A., Ziganshin M.A., Gerasimov A.V. Features of the self-organization of films based on triglycine under the influence of vapors of organic compounds // J. Surf. Invest. – 2020. – V. 3. – P. 73–81. – doi: 10.1134/S102745102003009X.

18. Ziganshin M.A., Morozova A.S, Ziganshina S.A., Vorobev V.V., Suwińska K., Bukharaev A.A., Gorbatchuk V.V. Additive and antagonistic effects of substrate and vapors on selfassembly of glycyl-glycine in thin films // Mol. Cryst. Liq. Cryst. – 2019. – V. 690, No 1. – P. 67–83. – doi: 10.1080/15421406.2019.1683311.

19. Arutyunov P.A., Tolstikhina A.L. Atomic force microscopy in designing micro- and nanoelectronic devices. Mikroelektronika, 1999, vol. 28, no. 6, pp. 405–414. (In Russian)

20. Morozova A.S., Ziganshina S.A., Ziganshin M.A., Bukharaev A.A. Self-organization of di- and triglycine oligopeptides in thin films on the hydrophilic and hydrophobic silicon surface under exposure to organic compounds vapors // Russ. J. Gener. Chem. – 2022. – V. 92, No 7. – P. 1271–1279. – doi: 10.1134/S1070363222070155.


Review

For citations:


Morozova A.S., Kudryavtseva E.O., Ziganshina S.A., Ziganshin M.A., Bukharaev A.A. Self-Assembly of the Dipeptide L-Alanyl-L-Phenylalanine under the Action of Methanol Vapor with the Formation of Micro- and Nanostructures. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2023;165(1):37–48. (In Russ.) https://doi.org/10.26907/2542-064X.2023.1.37-48

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)