Optically Active Sulfoxides from 2(5H)-Furanone and Monoterpene Alcohols: Synthesis, Structure, and Antibacterial Activity
https://doi.org/10.26907/2542-064X.2024.4.563-589
Abstract
A series of optically active 5(S)-(l-bornyloxy)- and 5(S)-(l-menthyloxy)-2(5H)-furanones with an arylthio group at the C(4) position of the γ-lactone ring was synthesized and studied for its oxidation reactions with various reagents. Novel 2(5H)-furanone sulfoxides were obtained as mixtures of two diastereoisomers through the oxidation of arylthioethers with m-chloroperbenzoic acid (m-СРВА) or hydrogen peroxide in acetic acid. Individual stereoisomers of these sulfoxides were isolated using recrystallization and high-performance liquid chromatography (HPLC) and characterized by IR and NMR spectroscopy. The molecular structures of eight stereoisomerically pure compounds were confirmed by X-ray diffraction (XRD) analysis. The antibacterial activity of the novel sulfoxides against Staphylococcus aureus and Escherichia coli was assessed, with a number of compounds found to inhibit bacterial growth and biofilm formation in S. aureus.
Keywords
About the Authors
A. M. KhabibrakhmanovaRussian Federation
Kazan, 420008
R. G. Faizova
Russian Federation
Kazan, 420008
D. P. Gerasimova
Russian Federation
Kazan, 420088
E. Y. Trizna
Russian Federation
Kazan, 420008
O. A. Lodochnikova
Russian Federation
Kazan, 420008
Kazan, 420088
A. R. Kayumov
Russian Federation
Kazan, 420008
L. Z. Latypova
Russian Federation
Kazan, 420008
A. R. Kurbangalieva
Russian Federation
Kazan, 420008
References
1. Gangemi C.M.A., D’Agostino E., Aversa M.C., Barattucci A., Bonaccorsi P.M. Sulfoxides and disulfides from sulfenic acids: Synthesis and applications. Tetrahedron, 2023, vol. 143, art. 133550. https://doi.org/10.1016/j.tet.2023.133550.
2. Wojaczyńska E., Wojaczyński J. Sulfoxides in medicine. Curr. Opin. Chem. Biol., 2023, vol. 76, art. 102340. https://doi.org/10.1016/j.cbpa.2023.102340.
3. Spyropoulou C.K., Skolia E., Flesariu D.F., Zissimou G.A., Gkizis P.L., Triandafillidi I., Athanasiou M., Itskos G., Koutentis P.A., Kokotos C.G. 3H-Phenothiazin-3-one: A photocatalyst for the aerobic photochemical oxidation of sulfides to sulfoxides. Adv. Synth. Catal., 2023, vol. 365, no. 15, pp. 2643–2650. https://doi.org/10.1002/adsc.202300516.
4. Salom-Roig X., Bauder C. Recent applications in the use of sulfoxides as chiral auxiliaries for the asymmetric synthesis of natural and biologically active products. Synthesis, 2020, vol. 52, no. 7, pp. 964–978. https://doi.org/10.1055/s-0039-1690803.
5. Jia T., Wang M., Liao J. Chiral sulfoxide ligands in asymmetric catalysis. Top. Curr. Chem., 2019, vol. 377, no. 2, art. 8. https://doi.org/10.1007/s41061-019-0232-9.
6. Pellissier H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, vol. 62, no. 8, pp. 1619–1665. https://doi.org/10.1016/j.tet.2005.10.040.
7. Fernandez I., Khiar N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev., 2003, vol. 103, no. 9, pp. 3651–3705. https://doi.org/10.1021/cr990372u.
8. León-Rojas A.F., Urbina-González J.M. Las furan-2[5H]-onas (Δα,β-butenolidas), su preparación e importancia biológica. Av. Quim., 2015, vol. 10, no. 1, pp. 67–78. (In Spanish)
9. Rossi R., Lessi M., Manzini C., Marianetti G., Bellina F. Synthesis and biological properties of 2(5H)-furanones featuring bromine atoms on the heterocyclic ring and / or brominated substituents. Curr. Org. Chem., 2017, vol. 21, no. 11, pp. 964–1018. https://doi.org/10.2174/1385272821666170111151917.
10. Husain A., Khan S.A., Iram F., Iqbal A., Asif M. Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur. J. Med. Chem., 2019, vol. 171, pp. 66–92. https://doi.org/10.1016/j.ejmech.2019.03.021.
11. Villamizar-Mogotocoro A.-F., León-Rojas A.-F., Urbina-González J.-M. Δα,β-Butenolides [furan2(5H)-ones]: Ring construction approaches and biological aspects – a mini-review. Mini‑Rev. Org. Chem., 2020, vol. 17, no. 8, pp. 922–945. https://doi.org/10.2174/1570193X17666200220130735.
12. Kayumov A.R., Sharafutdinov I.S., Trizna E.Yu., Bogachev M.I. Chapter 6 – Antistaphylococcal activity of 2(5H)-furanone derivatives. In: Yadav M.K., Singh B.P. (Eds.) New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms. Elsevier, 2020, pp. 77–89. https://doi.org/10.1016/B978-0-444-64279-0.00006-2.
13. Kurbangalieva A.R., Devyatova N.F., Bogdanov A.V., Berdnikov E.A., Mannafov T.G., Krivolapov D.B., Litvinov I.A., Chmutova G.A. Synthesis of novel arylthio derivatives of mucochloric acid. Phosphorus Sulfur Silicon Relat. Elem., 2007, vol. 182, no. 3, pp. 607–630. https://doi.org/10.1080/10426500601015989.
14. Kurbangalieva A.R., Lodochnikova O.A., Devyatova N.F., Berdnikov E.A., Gnezdilov O.I., Litvinov I.A., Chmutova G.A. Structural diversity of interaction products of mucochloric acid and its derivatives with 1,2-ethanedithiol. Tetrahedron, 2010, vol. 66, no. 52, pp. 9945–9953. https://doi.org/10.1016/j.tet.2010.10.047.
15. Khabibrakhmanova A.M., Rabbanieva E.S., Gerasimova D.P., Islamov D.R., Latypova L.Z., Lodochnikova O.A., Kurbangalieva A.R. Optically active bisthioethers and disulfones derived from furan-2(5H)-one and dithiols: Synthesis and structure. Russ. J. Org. Chem., 2022, vol. 58, no. 8, pp. 1160–1169. https://doi.org/10.1134/S1070428022080127.
16. Khabibrakhmanova A.M., Faizova R.G., Lodochnikova O.A., Zamalieva R.R., Latypova L.Z., Trizna E.Y., Porfiryev A.G., Tanaka K., Sachenkov O.A., Kayumov A.R., Kurbangalieva A.R. The novel chiral 2(5H)-furanone sulfones possessing terpene moiety: Synthesis and biological activ ity. Molecules, 2023, vol. 28, no. 6, art. 2543. https://doi.org/10.3390/molecules28062543.
17. Latypova L.Z., Saigitbatalova E.S., Chulakova D.R., Kurbangalieva A.R., Berdnikov E.A., Chmutova G.A. Sulfides, sulfones, and sulfoxides of the furan-2(5H)-one series. Synthesis and structure. Russ. J. Org. Chem., 2014, vol. 50, no. 4, pp. 521–534. https://doi.org/10.1134/S1070428014040149.
18. Khabibrakhmanova A.M., Rabbanieva E.S., Gerasimova D.P., Lodochnikova O.A., Latypova L.Z., Kurbangalieva A.R. Oxidation of chiral 2(5H)-furanone bis-thioethers to disulfoxides. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 1, pp. 133–148. https://doi.org/10.26907/2542-064X.2023.1.133-148. (In Russian)
19. Sharafutdinov I.S., Trizna E.Y., Baydamshina D.R., Ryzhikova M.N., Sibgatullina R.R., Khabibrakhmanova A.M., Latypova L.Z., Kurbangalieva A.R., Rozhina E.V., Klinger-Stobel M., Fakhrullin R.F., Pletz M.W., Bogachev M.I., Kayumov A.R., Makarewicz O. Antimicrobial effects of sulfonyl derivative of 2(5H)-furanone against planktonic and biofilm associated methicillin-resistant and -susceptible Staphylococcus aureus. Front. Microbiol., 2017, vol. 8, art. 2246. https://doi.org/10.3389/fmicb.2017.02246.
20. Sharafutdinov I.S., Pavlova A.S., Akhatova F.S., Khabibrakhmanova A.M., Rozhina E.V., Romanova Y.J., Fakhrullin R.F., Lodochnikova O.A., Kurbangalieva A.R., Bogachev M.I., Kayumov A.R. Unraveling the molecular mechanism of selective antimicrobial activity of 2(5H)-furanone derivative against Staphylococcus aureus. Int. J. Mol. Sci., 2019, vol. 20, no. 3, art. 694. https://doi.org/10.3390/ijms20030694.
21. Sulaiman R., Trizna E., Kolesnikova A., Khabibrakhmanova A., Kurbangalieva A., Bogachev M., Kayumov A. Antimicrobial and biofilm-preventing activity of l-borneol possessing 2(5H)-furanone derivative F131 against S. aureus–C. albicans mixed cultures. Pathogens, 2023, vol. 12, no. 1, art. 26. https://doi.org/10.3390/pathogens12010026.
22. Hussain H., Green I.R., Ahmed I. Journey describing applications of oxone in synthetic chemistry. Chem. Rev., 2013, vol. 113, no. 5, pp. 3329–3371. https://doi.org/10.1021/cr3004373.
23. Ruano J.L.G., Bercial F., Fraile A., Castro A.M.M., Martın M.R. Stereoselectivity control in Diels–Alder reactions of 4-thiosubstituted 5-alkoxyfuranones: Synthesis and reactivity of enantiopure 4-sulfinyl and sulfonyl 5-(l-menthyloxy)furan-2(5H)-ones. Tetrahedron: Asymmetry, 2000, vol. 11, no. 23, pp. 4737–4752. https://doi.org/10.1016/S0957-4166(00)00471-7.
24. Mata E.G. Recent advances in the synthesis of sulfoxides from sulfides. Phosphorus Sulfur Silicon Relat. Elem., 1996, vol. 117, no. 1, pp. 231–286. https://doi.org/10.1080/10426509608038790.
25. Gordon A., Ford R. Sputnik khimika: Fiziko‑khimicheskie svoistva, metodiki, bibliografiya [The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References]. Moscow, Mir, 1976. 541 p. (In Russian)
26. Sheldrick G.M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, pt. 1, pp. 3–8. https://doi.org/10.1107/S2053273314026370.
27. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, pt. 1. pp. 3–8. https://doi.org/10.1107/S2053229614024218.
28. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, vol. 42, no. 2, pp. 339–341. https://doi.org/10.1107/S0021889808042726.
29. Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, vol. 65, pt. 2, pp. 148–155. https://doi.org/10.1107/S090744490804362X.
30. Kayumov A.R., Khakimullina E.N., Sharafutdinov I.S., Trizna E.Y., Latypova L.Z., Hoang T.L., Margulis A.B., Bogachev M.I., Kurbangalieva A.R. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones. J. Antibiot., 2015, vol. 68, no. 5, pp. 297–301. https://doi.org/10.1038/ja.2014.143.
31. Leclercq R., Cantón R., Brown D.F.J., Giske C.G., Heisig P., MacGowan A.P., Mouton J.W., Nordmann P., Rodloff A.C., Rossolini G.M., Soussy C.-J., Steinbakk M., Winstanley T.G., Kahlmeter G. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect., 2013, vol. 19, no. 2, pp. 141–160. https://doi.org/10.1111/j.1469-0691.2011.03703.x.
32. O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol., 1998, vol. 28, no. 3, pp. 449–461. https://doi.org/10.1046/j.1365-2958.1998.00797.x.
Supplementary files
![]() |
1. Дополнительные материалы | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
Review
For citations:
Khabibrakhmanova A.M., Faizova R.G., Gerasimova D.P., Trizna E.Y., Lodochnikova O.A., Kayumov A.R., Latypova L.Z., Kurbangalieva A.R. Optically Active Sulfoxides from 2(5H)-Furanone and Monoterpene Alcohols: Synthesis, Structure, and Antibacterial Activity. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2024;166(4):563-589. (In Russ.) https://doi.org/10.26907/2542-064X.2024.4.563-589