Plant Microbiome: Origin, Composition, and Functions
https://doi.org/10.26907/2542-064X.2023.2.231-262
Abstract
Microorganisms play an important role in the growth and development of a plant throughout its entire life cycle. Recent advances in the methods of molecular biological analysis have expanded our understanding of the composition and functions of plant microbiota (epiphytic, rhizosphere, and endosphere) and the molecular mechanisms associated with specific processes that govern plant-microorganism interactions. This article reviews the types of plant microbial communities, their sources of origin, and species composition, as well as the critical role they play in modulating the plant immune response against phytopathogens, improving the elemental nutrition of plants, scaring away herbivorous animals, producing phytohormones, and enabling plants to thrive under extreme environmental conditions.
Keywords
About the Authors
G. Sh. GalievaRussian Federation
Kazan, 420008
P. Yu. Galitskaya
Russian Federation
Kazan, 420008
S. Yu. Selivanovskaya
Russian Federation
Kazan, 420008
References
1. Compant S., Samad A., Faist H., Sessitsch A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application // J. Adv. Res. 2019. V. 19. P. 29–37. doi: 10.1016/j.jare.2019.03.004.
2. Leach J.E., Triplett L.R., Argueso C.T., Trivedi P. Communication in the phytobiome // Cell. 2017. V. 169, No 4. P. 587–596. doi: 10.1016/j.cell.2017.04.025.
3. Zhang H., Li X., Yang Q., Sun L., Yang X., Zhou M., Deng R., Bi L. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure // Int. J. Environ. Res. Public Health. 2017. V. 14, No 11. art. 1336. doi: 10.3390/ijerph14111336.
4. de Souza R., Ambrosini A., Passaglia L.M.P. Plant growth-promoting bacteria as inoculants in agricultural soils // Genet. Mol. Biol. 2015. V. 38, No 4. P. 401–419. doi: 10.1590/S1415-475738420150053.
5. Gray E.J., Smith D.L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes // Soil Biol. Biochem. 2005. V. 37, No 3. P. 395–412. doi: 10.1016/j.soilbio.2004.08.030.
6. Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V.L., Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants // Annu. Rev. Plant Biol. 2013. V. 64. P. 807–838. doi: 10.1146/annurev-arplant-050312-120106.
7. Hassani M.A., Durán P., Hacquard S. Microbial interactions within the plant holobiont // Microbiome. 2018. V. 6, No 1. art. 58. doi: 10.1186/s40168-018-0445-0.
8. Trivedi P., Leach J.E., Tringe S.G., Sa T., Singh B.K. Plant–microbiome interactions: From community assembly to plant health // Nat. Rev. Microbiol. 2020. V. 18, No 11. P. 607–621. doi: 10.1038/s41579-020-0412-1.
9. Begum N., Qin C., Ahanger M.A., Raza S., Khan M.I., Ashraf M., Ahmed M., Zhang L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance // Front. Plant Sci. 2019. V. 10. art. 1068. doi: 10.3389/fpls.2019.01068.
10. Semenov M., Nikitin D.A., Stepanov A.L., Semenov V.M. The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil // Eurasian Soil Sci. 2019. V. 3. P. 355–369. doi: 10.1134/S1064229319010137.
11. Afzal I., Shinwari Z.K., Sikandar S., Shahzad S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants // Microbiol. Res. 2019. V. 221. P. 36–49. doi: 10.1016/j.micres.2019.02.001.
12. Dong C., Wang L., Li Q., Shang Q. Epiphytic and endophytic fungal communities of tomato plants // Hortic. Plant J. 2021. V. 7, No 1. P. 38–48. doi: 10.1016/j.hpj.2020.09.002.
13. Lopez-Echartea E., Strejcek M., Mukherjee S., Uhlik O., Yrjälä K. Bacterial succession in oil-contaminated soil under phytoremediation with poplars // Chemosphere. 2020. V. 243. art. 125242. doi: 10.1016/j.chemosphere.2019.125242.
14. Hamonts K., Trivedi P., Garg A., Janitz C., Grinyer J., Holford P., Botha F.C., Anderson I.C., Singh B.K. Field study reveals core plant microbiota and relative importance of their drivers // Environ. Microbiol. 2018. V. 20, No 1. P. 124–140. doi: 10.1111/14622920.14031.
15. Rastogi G., Sbodio A., Tech J.J., Suslow T.V., Coaker G.L., Leveau J.H.J. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce // ISME J. 2012. V. 6, No 10. P. 1812–1822. doi: 10.1038/ismej.2012.32.
16. Ruppel S., Krumbein A., Schreiner M. Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions // Microb. Ecol. 2008. V. 56, No 2. P. 364–372. doi: 10.1007/s00248-007-9354-7.
17. Steven B., Huntley R.B., Zeng Q. The influence of flower anatomy and apple cultivar on the apple flower phytobiome // Phytobiomes Journal. 2018. V. 2, No 3. P. 171–179. doi: 10.1094/PBIOMES-03-18-0015-R.
18. Inácio J., Pereira P., Carvalho M., Fonseca Á., Amaral-Collaço M.T., Spencer-Martins I. Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal // Microb. Ecol. 2002. V. 44, No 4. P. 344–353. doi: 10.1007/s00248-002-2022-z.
19. Preto G., Martins F., Pereira J.A., Baptista P. Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents // Biol. Control. 2017. V. 110. P. 1–9. doi: 10.1016/j.biocontrol.2017.03.011.
20. Rivas-Franco F., Hampton J.G., Narciso J., Rostás M., Wessman P., Saville D.J., Jackson T.A., Glare T.A. Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones // Biol. Control. 2020. V. 150. art. 104347. doi: 10.1016/j.biocontrol.2020.104347.
21. Ma B., Lv X., Warren A., Gong J. Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China // Antonie van Leeuwenhoek. 2013. V. 104, No 5. P. 759–768. doi: 10.1007/s10482-013-9984-3.
22. Zuo Y., Hu Q., Zhang K., He X. Host and tissue affiliations of culturable endophytic fungi associated with xerophytic plants in the desert region of Northwest China // Agronomy. 2022. V. 12, No 3. art. 727. doi: 10.3390/agronomy12030727.
23. Liu H., Carvalhais L.C., Crawford M., Singh E., Dennis P.G., Pieterse C.M.J., Schenk P.M. Inner plant values: Diversity, colonization and benefits from endophytic bacteria // Front. Microbiol. 2017. V. 8. art. 2552. doi: 10.3389/fmicb.2017.02552.
24. Chebotar V.K., Malfanova N.V., Shcherbakov A.V., Ahtemova G.A., Borisov A.Y., Lugtenberg B., Tikhonovich I.A. Endophytic bacteria in microbial drugs that improve plant development (Review) // Appl. Biochem. Microbiol. 2015. V. 51, No 3. P. 271–277. doi: 10.1134/S0003683815030059.
25. Durán M., San Emeterio L., Canals R.M. Comparison of culturing and metabarcoding methods to describe the fungal endophytic assemblage of Brachypodium rupestre growing in a range of anthropized disturbance regimes // Biology. 2021. V. 10, No 12. art. 1246. doi: 10.3390/biology10121246.
26. Duan M., Li H., Gu J., Tuo X., Sun W., Qian X., Wang X. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce // Environ. Pollut. 2017. V. 224. P. 787–795. doi: 10.1016/j.envpol.2017.01.021.
27. Taye Z.M., Helgason B.L., Bell J.K., Norris C.E., Vail S., Robinson S.J., Parkin I.A.P., Arcand M., Mamet S., Links M.G., Dowhy T., Siciliano S., Lamb E.G. Core and differentially abundant bacterial taxa in the rhizosphere of field grown Brassica napus genotypes: Implications for canola breeding // Front. Microbiol. 2020. V. 10. art. 3007. doi: 10.3389/fmicb.2019.03007.
28. Toju H., Peay K.G., Yamamichi M., Narisawa K., Hiruma K., Naito K., Fukuda S., Ushio M., Nakaoka S., Onoda Y., Yoshida K., Schlaeppi K., Bai Y., Sugiura R., Ichihashi Y., Minamisawa K., Kiers E.T. Core microbiomes for sustainable agroecosystems // Nat. Plants. 2018. V. 4, No 5. P. 247–257. doi: 10.1038/s41477-018-0139-4.
29. Jousset A., Bienhold C., Chatzinotas A., Gallien L., Gobet A., Kurm V., Küsel K., Rillig M.C., Rivett D.W., Salles J.F., van der Heijden M.G.A., Youssef N.H., Zhang X., Wei Z., Hol W.H.G. Where less may be more: How the rare biosphere pulls ecosystems strings // ISME J. 2017. V. 11, No 4. P. 853–862. doi: 10.1038/ismej.2016.174.
30. Hanski I. Dynamics of regional distribution: The core and satellite species hypothesis // Oikos. 1982. V. 38, No 2. P. 210–221. doi: 10.2307/3544021.
31. Chambers L.G., Guevara R., Boyer J.N., Troxler T.G., Davis S.E. Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil // Wetlands. 2016. V. 36, No 2. P. 361–371. doi: 10.1007/s13157-016-0745-8.
32. Lemanceau P., Blouin M., Muller D., Moënne-Loccoz Y. Let the core microbiota be functional // Trends Plant Sci. 2017. V. 22, No 7. P. 583–595. doi: 10.1016/j.tplants.2017.04.008.
33. Hol W.H.G., de Boer W., de Hollander M., Kuramae E.E., Meisner A., van der Putten W.H. Context dependency and saturating effects of loss of rare soil microbes on plant productivity // Front. Plant Sci. 2015. V. 6. art. 485. doi: 10.3389/fpls.2015.00485.
34. Zhang Y.-J., Hu H.-W., Chen Q.-L., Singh B.K., Yan H., Chen D., He J.-Z. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes // Environ. Int. 2019. V. 130. art. 104912. doi: 10.1016/j.envint.2019.104912.
35. Mendes R., Garbeva P., Raaijmakers J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms // FEMS Microbiol. Rev. 2013. V. 37, No 5. P. 634–663. doi: 10.1111/1574-6976.12028.
36. Gans J., Wolinsky M., Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil // Science. 2005. V. 309, No 5739. P. 1387–1390. doi: 10.1126/science.1112665.
37. Zarraonaindia I., Owens S.M., Weisenhorn P., West K., Hampton-Marcell J., Lax S., Bokulich N.A., Mills D.A., Martin G., Taghavi S., van der Lelie D., Gilbert J.A. The soil microbiome influences grapevine-associated microbiota // mBio. 2015. V. 6, No 2. art. e02527-14. doi: 10.1128/mBio.02527-14.
38. Coleman-Derr D., Desgarennes D., Fonseca-Garcia C., Gross S., Clingenpeel S., Woyke T., North G., Visel A., Partida-Martinez L.P., Tringe S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species // New Phytol. 2016. V. 209, No 2. P. 798–811. doi: 10.1111/nph.13697.
39. de Souza R.S.C., Okura V.K., Armanhi J.S.L., Jorrín B., Lozano N., da Silva M.J., González-Guerrero M., de Araújo L.M., Verza N.C., Bagheri H.C., Imperial J., Arruda P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome // Sci. Rep. 2016. V. 6, No 1. art. 28774. doi: 10.1038/srep28774.
40. Rozpądek P., Domka A.M., Nosek M., Ważny R., Jędrzejczyk R.J., Wiciarz M., Turnau K. The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. // Front. Microbiol. 2018. V. 9. art. 441. doi: 10.3389/fmicb.2018.00441.
41. Arora N.K., Mishra J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture // Appl. Soil Ecol. 2016. V. 107. P. 405–407. doi: 10.1016/j.apsoil.2016.05.020.
42. Oldroyd G.E.D. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants // Nat. Rev. Microbiol. 2013. V. 11, No 4. P. 252–263. doi: 10.1038/nrmicro2990.
43. Adebajo S.O., Akintokun P.O., Ojo A.E., Akintokun A.K., Badmos O.A. Recovery of biosurfactant using different extraction solvent by rhizospheric bacteria isolated from rice-husk and poultry waste biochar amended soil // Egypt. J. Basic Appl. Sci. 2020. V. 7, No 1. P. 252–266. doi: 10.1080/2314808X.2020.1797377.
44. Goswami M., Deka S. Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity // Colloids Surf., B. 2019. V. 178. P. 285–296. doi: 10.1016/j.colsurfb.2019.03.003.
45. Pessione E., Garcia-Contreras R. Non-conventional antimicrobial agents // Rezaei N. (Ed.) Encyclopedia of Infection and Immunity. V. 4. Elsevier, 2022. P. 586–607. doi: 10.1016/B978-0-12-818731-9.00136-1.
46. Wang F., Fu Y.-H., Sheng H.-J., Topp E., Jiang X., Zhu Y.-G., Tiedje J.M. Antibiotic resistance in the soil ecosystem: A One Health perspective // Curr. Opin. Environ. Sci. Health. 2021. V. 20. art. 100230. doi: 10.1016/j.coesh.2021.100230.
47. Malfanova N., Franzil L., Lugtenberg B., Chebotar V., Ongena M. Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8 // Arch. Microbiol. 2012. V. 194, No 11. P. 893–899. doi: 10.1007/s00203-012-0823-0.
48. Awasthi N., Kumar A., Makkar R., Cameotra S.S. Biodegradation of soil-applied endosulfan in the presence of a biosurfactant // J. Environ. Sci. Health, Part B. 1999. V. 34, No 5. P. 793–803. doi: 10.1080/03601239909373226.
49. Dobrovol’skaya T.G. Struktura bakterial’nykh soobshchestv pochv [The Structure of Soil Bacterial Communities]. Moscow, IKTs Akademkniga, 2002. 282 p. (In Russian)
50. Feoktistova N.V., Mardanova A.M., Hadieva G.F., Sharipova M.R. Rhizosphere bacteria. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 2, pp. 207–224. (In Russian)
51. Matilla M.A., Espinosa-Urgel M., Rodríguez-Herva J.J., Ramos J.L., Ramos-González M.I. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere // Genome Biol. 2007. V. 8, No 9. art. R179. doi: 10.1186/gb-2007-8-9-r179.
52. Gamalero E., Lingua G., Berta G., Lemanceau P. Methods for studying root colonization by introduced beneficial bacteria // Lichtfouse E., Navarrete M., Debaeke P., Véronique S., Alberola C. (Eds.) Sustainable Agriculture. Dordrecht: Springer, 2009. P. 601–615. doi: 10.1007/978-90-481-2666-8_37.
53. Compant S., Clément C., Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization // Soil Biol. Biochem. 2010. V. 42, No 5. P. 669–678. doi: 10.1016/j.soilbio.2009.11.024.
54. Jiménez-Bremont J.F., Marina M., Guerrero-González M. de la L., Rossi F.R., SánchezRangel D., Rodríguez-Kessler M., Ruiz O.A., Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions // Front. Plant Sci. 2014. V. 5. art. 95. doi: 10.3389/fpls.2014.00095.
55. 55. Labutova N.M. Interactions between endomycorrhizal fungi and rhizosphere microorganisms. Mikol. Fitopatol., 2009, vol. 43, no. 1, pp. 3–19. (In Russian)
56. Pattnaik S.S., Busi S. Rhizospheric fungi: Diversity and potential biotechnological applications // Yadav A., Mishra S., Singh S., Gupta A. (Eds) Recent Advancement in White Biotechnology Through Fungi. Vol. 1: Diversity and enzymes perspectives. Ser.: Fungal Biology. Cham: Springer, 2019. P. 63–84. doi: 10.1007/978-3-030-10480-1_2.
57. Kennedy A.C., de Luna L.Z. Rhizosphere // Hillel D. (Ed.) Encyclopedia of Soils in the Environment. V. 4. Acad. Press, 2005. P. 399–406. doi: 10.1016/B0-12-348530-4/00163-6.
58. Poveda J., Eugui D., Abril-Urías P., Velasco P. Endophytic fungi as direct plant growth promoters for sustainable agricultural production // Symbiosis. 2021. V. 85, No 1. P. 1–19. doi: 10.1007/s13199-021-00789-x.
59. Rajkumar H.G., Seema H.S., Sunil Kumar C.P. Diversity of arbuscular mycorrhizal fungi associated with some medicinal plants in Western Ghats of Karnataka region, India // World J. Nucl. Sci. Technol. 2012. V. 2, No 1. P. 13–20.
60. Coutinho T.A., Bophela K.N. Chapter 7 – Tree leaves as a habitat for phyllobacteria // Asiegbu F.O., Kovalchuk A. (Eds.) Forest Microbiology. Vol. 1: Tree microbiome: Phyllosphere, endosphere and rhizosphere. Acad. Press, 2021. P. 133–144. doi: 10.1016/B978-0-12-822542-4.00001-2.
61. Lindow S.E., Brandl M.T. Microbiology of the phyllosphere // Appl. Environ. Microbiol. 2003. V. 69, No 4. P. 1875–1883. doi: 10.1128/AEM.69.4.1875-1883.2003.
62. Sundin G.W., Jacobs J.L. Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.) // Microb. Ecol. 1999. V. 38, No 1. P. 27–38. doi: 10.1007/s002489900152.
63. Bunster L., Fokkema N.J., Schippers B. Effect of surface-active Pseudomonas spp. on leaf wettability // Appl. Environ. Microbiol. 1989. V. 55, No 6. P. 1340–1345. doi: 10.1128/aem.55.6.1340-1345.1989.
64. Yao H., Sun X., He C., Maitra P., Li X.-C., Guo L.-D. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem // Microbiome. 2019. V. 7, No 1. art. 57. doi: 10.1186/s40168-019-0671-0.
65. Rodrigo S., García-Latorre C., Santamaria O. Metabolites produced by fungi against fungal phytopathogens: Review, implementation and perspectives // Plants. 2022. V. 11, No 1. art. 81. doi: 10.3390/plants11010081.
66. Rosenblueth M., Martínez-Romero E. Bacterial endophytes and their interactions with hosts // Mol. Plant Microbe Interact. 2006. V. 19, No 8. P. 827–837. doi: 10.1094/MPMI19-0827.
67. Alam B., Lǐ J., Gě Q., Khan M.A., Gōng J., Mehmood S., Yuán Y., Gǒng W. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? // Front. Plant Sci. 2021. V. 12. art. 791033. doi: 10.3389/fpls.2021.791033.
68. Zhang H., Li X., Yang Q., Sun L., Yang X., Zhou M., Deng R., Bi L. Plant growth, antibiotic uptake, and prevalence of antibiotic resistance in an endophytic system of pakchoi under antibiotic exposure // Int. J. Environ. Res. Public Health. 2017. V. 14, No 11. art. 1336. doi: 10.3390/ijerph14111336.
69. Buschart A., Sachs S., Chen X., Herglotz J., Krause A., Reinhold-Hurek B. Flagella mediate endophytic competence rather than act as MAMPS in rice – Azoarcus sp. strain BH72 interactions // Mol. Plant-Microbe Interact. 2012. V. 25, No 2. P. 191–199. doi: 10.1094/MPMI-05-11-0138.
70. Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A. The importance of the microbiome of the plant holobiont // New Phytol. 2015. V. 206, No 4. P. 1196–1206. doi: 10.1111/nph.13312.
71. Zipfel C., Robatzek S., Navarro L., Oakeley E.J., Jones J.D.G., Felix G., Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception // Nature. 2004. V. 428, No 6984. P. 764–767. doi: 10.1038/nature02485.
72. Khare E., Mishra J., Arora N.K. Multifaceted interactions between endophytes and plant: Developments and prospects // Front. Microbiol. 2018. V. 9. art. 2732. doi: 10.3389/fmicb.2018.02732.
73. Bhore S.J., Nithya R., Loh C.Y. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds // Bioinformation. 2010. V. 5, No 5. P. 191–197. doi: 10.6026/97320630005191.
74. Shahzad R., Waqas M., Khan A.L., Asaf S., Khan M.A., Kang S.-M., Yun B.-W., Lee I.-J. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa // Plant Physiol. Biochem. 2016. V. 106. P. 236–243. doi: 10.1016/j.plaphy.2016.05.006.
75. Tian B.-Y., Cao Y., Zhang K.-Q. Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots // Sci. Rep. 2015. V. 5, No 1. art. 17087. doi: 10.1038/srep17087.
76. Sessitsch A., Hardoim P., Döring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F., Rahalkar M., Hurek T., Sarkar A., Bodrossy L., van Overbeek L., Brar D., van Elsas J.D., Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis // Mol. Plant-Microbe Interact. 2012. V. 25, No 1. P. 28–36. doi: 10.1094/MPMI-08-11-0204.
77. Ye W., Murata Y. Microbe associated molecular pattern signaling in guard cells // Front. Plant Sci. 2016. V. 7. art. 583. doi: 10.3389/fpls.2016.00583.
78. Krause A., Ramakumar A., Bartels D., Battistoni F., Bekel T., Boch J., Böhm M., Friedrich F., Hurek T., Krause L., Linke B., McHardy A.C., Sarkar A., Schneiker S., Syed A.A., Thauer R., Vorhölter F.-J., Weidner S., Pühler A., Reinhold-Hurek B., Kaiser O., Goesmann A. Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72 // Nat. Biotechnol. 2006. V. 24, No 11. P. 1384–1391. doi: 10.1038/nbt1243.
79. Frank A.C., Saldierna Guzmán J.P., Shay J.E. Transmission of bacterial endophytes // Microorganisms. 2017. V. 5, No 4. art. 70. doi: 10.3390/microorganisms5040070.
80. Lopez-Fernandez S., Mazzoni V., Pedrazzoli F., Pertot I., Campisano A. A phloemfeeding insect transfers bacterial endophytic communities between grapevine plants // Front. Microbiol. 2017. V. 8. art. 834. doi: 10.3389/fmicb.2017.00834.
81. Puente M.E., Li C.Y., Bashan Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings // Environ. Exp. Bot. 2009. V. 66, No 3. P. 402–408. doi: 10.1016/j.envexpbot.2009.04.007.
82. Rout M.E., Chrzanowski T.H., Westlie T.K., DeLuca T.H., Callaway R.M., Holben W.E. Bacterial endophytes enhance competition by invasive plants // Am. J. Bot. 2013. V. 100, No 9. P. 1726–1737. doi: 10.3732/ajb.1200577.
83. Schardl C.L. Epichloë festucae and related mutualistic symbionts of grasses // Fungal Genet. Biol. 2001. V. 33, No 2. P. 69–82. doi: 10.1006/fgbi.2001.1275.
84. Cope-Selby N., Cookson A., Squance M., Donnison I., Flavell R., Farrar K. Endophytic bacteria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, plant evolution and breeding // GCB Bioenergy. 2017. V. 9, No 1. P. 57–77. doi: 10.1111/gcbb.12364.
85. Barret M., Briand M., Bonneau S., Préveaux A., Valière S., Bouchez O., Hunault G., Simoneau P., Jacquesa M.-A. Emergence shapes the structure of the seed microbiota // Appl. Environ. Microbiol. 2015. V. 81, No 4. P. 1257–1266. doi: 10.1128/AEM.03722-14.
86. Truyens S., Weyens N., Cuypers A., Vangronsveld J. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants // Environ. Microbiol. Rep. 2015. V. 7, No 1. P. 40–50. doi: 10.1111/1758-2229.12181.
87. Thomas P., Sahu P.K. Vertical transmission of diverse cultivation-recalcitrant endophytic bacteria elucidated using watermelon seed embryos // Front. Microbiol. 2021. V. 12. art. 635810. doi: 10.3389/fmicb.2021.635810.
88. Khan A.L., Waqas M., Kang S.-M., Al-Harrasi A., Hussain J., Al-Rawahi A., Al-Khiziri S., Ullah I., Ali L., Jung H.-Y., Lee I.-J. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth // J. Microbiol. 2014. V. 52, No 8. P. 689–695. doi: 10.1007/s12275-014-4002-7.
89. Qin S., Zhang Y.-J., Yuan B., Xu P.-Y., Xing K., Wang J., Jiang J.-H. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress // Plant Soil. 2013. V. 374, No 1. P. 753–766. doi: 10.1007/s11104-0131918-3.
90. Subramanian P., Mageswari A., Kim K., Lee Y., Sa T. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity // Mol. PlantMicrobe Interact. 2015. V. 28, No 10. P. 1073–1081. doi: 10.1094/MPMI-01-15-0021-R.
91. Su F., Jacquard C., Villaume S., Michel J., Rabenoelina F., Clément C., Barka E.A., Dhondt-Cordelier S., Vaillant-Gaveau N. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana // Front. Plant Sci. 2015. V. 6. art. 810. doi: 10.3389/fpls.2015.00810.
92. Yang A., Akhtar S.S., Fu Q., Naveed M., Iqbal S., Roitsch T., Jacobsen S.-E. Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress // Plants. 2020. V. 9, No 6. art. 672. doi: 10.3390/plants9060672.
93. Theocharis A., Bordiec S., Fernandez O., Paquis S., Dhondt-Cordelier S., Baillieul F., Clément C., Barka E.A. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures // Mol. Plant-Microbe Interact. 2012. V. 25, No 2. P. 241–249. doi: 10.1094/MPMI-05-11-0124.
94. Ma Y., Rajkumar M., Zhang C., Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation // J. Environ. Manage. 2016. V. 174. P. 14–25. doi: 10.1016/j.jenvman.2016.02.047.
95. Madhaiyan M., Poonguzhali S., Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.) // Chemosphere. 2007. V. 69, No 2. P. 220–228. doi: 10.1016/j.chemosphere.2007.04.017.
96. Lafi F.F., AlBladi M.L., Salem N.M., Al-Banna L., Alam I., Bajic V.B., Hirt H., Saad M.M. Draft genome sequence of the plant growth-promoting Pseudomonas punonensis strain D1-6 isolated from the desert plant Erodium hirtum in Jordan // Genome Announce. 2017. V. 5, No 2. art. e01437-16. doi: 10.1128/genomeA.01437-16.
97. Gourion B., Berrabah F., Ratet P., Stacey G. Rhizobium–legume symbioses: The crucial role of plant immunity // Trends Plant Sci. 2015. V. 20, No 3. P. 186–194. doi: 10.1016/j.tplants.2014.11.008.
98. Straub D., Rothballer M., Hartmann A., Ludewig U. The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants // Front. Microbiol. 2013. V. 4. art. 168. doi: 10.3389/fmicb.2013.00168.
99. Moyes A.B., Kueppers L.M., Pett-Ridge J., Carper D.L., Vandehey N., O’Neil J., Frank A.C. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer // New Phytol. 2016. V. 210, No 2. P. 657–668. doi: 10.1111/nph.13850.
100. Puri A., Padda K.P., Chanway C.P. Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial // Symbiosis. 2016. V. 69, No 2. P. 123–129. doi: 10.1007/s13199-0160385-z.
101. Schalk I.J., Hannauer M., Braud A. New roles for bacterial siderophores in metal transport and tolerance // Environ. Microbiol. 2011. V. 13, No 11. P. 2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x.
102. Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates // Front. Microbiol. 2015. V. 6. art. 745. doi: 10.3389/fmicb.2015.00745.
103. Bodenhausen N., Somerville V., Desirò A., Walser J.-C., Borghi L., van der Heijden M.G.A., Schlaeppi K. Petunia- and Arabidopsis-specific root microbiota responses to phosphate supplementation // Phytobiomes J. 2019. V. 3, No 2. P. 112–124. doi: 10.1094/PBIOMES-12-18-0057-R.
104. Kusari P., Kusari S., Lamshöft M., Sezgin S., Spiteller M., Kayser O. Quorum quenching is an antivirulence strategy employed by endophytic bacteria // Appl. Microbiol. Biotechnol. 2014. V. 98, No 16. P. 7173–7183. doi: 10.1007/s00253-014-5807-3.
105. Carrión V.J. Cordovez V., Tyc O., Etalo D.W., de Bruijn I., de Jager V.C.L., Medema M.H., Eberl L., Raaijmakers J.M. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils // ISME J. 2018. V. 12, No 9. P. 2307–2321. doi: 10.1038/s41396-018-0186-x.
106. Weisskopf L., Schulz S., Garbeva P. Microbial volatile organic compounds in intrakingdom and inter-kingdom interactions // Nat. Rev. Microbiol. 2021. V. 19, No 6. P. 391–404. doi: 10.1038/s41579-020-00508-1.
107. D’Alessandro M., Erb M., Ton J., Brandenburg A., Karlen D., Zopfi J., Turlings T.C.J. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions // Plant Cell Environ. 2014. V. 37, No 4. P. 813–826. doi: 10.1111/pce.12220.
108. De la Cruz-Lopez N., Cruz-López L., Holguín-Meléndez F., Guillén-Navarro G.K., Huerta-Palacios G. Volatile organic compounds produced by cacao endophytic bacteria and their inhibitory activity on Moniliophthora roreri // Curr. Microbiol. 2022. V. 79, No 2. art. 35. doi: 10.1007/s00284-021-02696-2.
109. Sibanda S., Moleleki L.N., Shyntum D.Y., Coutinho T.A. Quorum sensing in gramnegative plant pathogenic bacteria // Kimatu J.N. (Ed.) Advances in Plant Pathology. InTech, 2018. P. 67–89. doi: 0.5772/intechopen.78003.
110. Newman K.L., Chatterjee S., Ho K.A., Lindow S.E. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors // Mol. Plant-Microbe Interact. 2008. V. 21, No 3. P. 326–334. doi: 10.1094/MPMI-21-3-0326.
111. Martinez-Medina A., Flors V., Heil M., Mauch-Mani B., Pieterse C.M.J., Pozo M.J., Ton J., van Dam N.M., Conrath U. Recognizing plant defense priming // Trends Plant Sci. 2016. V. 21, No 10. P. 818–822. doi: 10.1016/j.tplants.2016.07.009.
112. Glaeser S.P., Imani J., Alabid I., Guo H., Kumar N., Kämpfer P., Hardt M., Blom J., Goesmann A., Rothballer M., Hartmann A., Kogel K.-H. Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica // ISME J. 2015. V. 10, No 4. P. 871–884. doi: 10.1038/ismej.2015.163.
113. Roberts E., Lindow S. Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora // ISME J. 2013. V. 8, No 2. P. 359–368. doi: 10.1038/ismej.2013.170.
114. Aly A.H., Debbab A., Kjer J., Proksch P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products // Fungal Diversity. 2010. V. 41, No 1. P. 1–16. doi: 10.1007/s13225-010-0034-4.
115. Abdel-Azeem A.M., Abdel-Azeem M.A., Khalil W.F. Chapter 21 – Endophytic fungi as a new source of antirheumatoid metabolites // Watson R.R., Preedy V. R. (Eds.) Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases. Acad. Press, 2019. P. 355–384. doi: 10.1016/B978-0-12-813820-5.00021-0.
Review
For citations:
Galieva G.Sh., Galitskaya P.Yu., Selivanovskaya S.Yu. Plant Microbiome: Origin, Composition, and Functions. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2023;165(2):231 –262. (In Russ.) https://doi.org/10.26907/2542-064X.2023.2.231-262