Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

New Insights into the Petrography and Mineralogy of the Malenkiy Site (Pay-Khoy, Nenets Autonomous District)

https://doi.org/10.26907/2542-064X.2024.3.525-547

Abstract

The rock composition and ore mineralization of the Malenkiy site located within the Khengur gabbro-dolerite complex of the Pay-Khoy were examined. Petrogeochemical analysis revealed two varieties of the studied rocks: fine-crystalline quartz and medium- and coarse-crystalline quartz containing metagabbro-dolerite. The Y, Zr, and Nb contents suggest that metagabbro-dolerites formed in an intraplate setting from enriched mantle sources during the melting of garnet peridotite, with a small contribution from the melt source of ancient continental crust. Two types of ore mineralization were distinguished: nest- and veinlet-disseminated sphalerite-chalcopyrite-pyrrhotite (type I) and veinlet-disseminated cobaltite-pentlandite-chalcopyrite-pyrrhotite (type II). The most efficient ore mineralization was type II, which is characterized by the presence of both high-temperature cobalt- and nickel-bearing sulfide minerals, as well as low-temperature tellurides of palladium (kotulskite) and silver (hessite).

About the Authors

R. I. Shaibekov
Institute of Geology, FRC Komi Science Center, Ural Branch, Russian Academy of Sciences
Russian Federation

Syktyvkar, 167000.


Competing Interests:

The authors declare no conflicts of interest.



A. M. Shmakova
Institute of Geology, FRC Komi Science Center, Ural Branch, Russian Academy of Sciences
Russian Federation

Syktyvkar, 167000.


Competing Interests:

The authors declare no conflicts of interest.



E. M. Tropnikov
Institute of Geology, FRC Komi Science Center, Ural Branch, Russian Academy of Sciences
Russian Federation

Syktyvkar, 167000.


Competing Interests:

The authors declare no conflicts of interest.



G. V. Ignatiev
Institute of Geology, FRC Komi Science Center, Ural Branch, Russian Academy of Sciences
Russian Federation

Syktyvkar, 167000.


Competing Interests:

The authors declare no conflicts of interest.



References

1. Zaborin O.V. Diabase formation of the Pay-Khoy. In: Fishman M.V. (Ed.) Magmatizm, metamorfizm i metallogeniya severa Urala i Pai-Khoya [Magmatism, Metamorphism, and Metallogeny of the Northern Urals and Pay-Khoy]. Syktyvkar, Komi Fil. Akad. Nauk SSSR, 1972, pp. 41–42. (In Russian)

2. Zaborin O.V., Zolotareva N.I., Korotkova G.A. Conducting group prospecting and mapping work at a scale of 1:50000 on sheets R-41-88-A (c, d), B (c, d) C, D; R-41-89-B (c, d); R-41-99-A (a, b), B; R-41-100-A, B, D (a, b); R-41-101-A, B, C (a, b), D; R-41-102-A (c, d), C, D; R-41-103-B (a, b); R-41-114-B (a, b). Report of the Pay-Khoy GSP on the work in 1971–1976. Vols. 1, 2, 3, 4. Vorkuta, GGP “Polyarnouralgeologiya”, 1977. (In Russian)

3. Yushkin N.P., Davydov V.P., Ostashchenko B.A. Igneous formations of the Central Pay-Khoy and their metallogenic features. Vopr. Petrogr. Sev. Urala Timana (Tr. Inst. Geol. Komi Fil. Akad. Nauk SSSR, vol. 17). Syktyvkar, Komi Fil. Akad. Nauk SSSR. 1972, pp. 3–34. (In Russian)

4. Ostaschenko B.A. Petrologiya i orudenenie tsentral’nopaikhoiskogo bazal’toidnogo kompleksa [Petrology and Mineralization of the Central Pay-Khoy Basaltoid Complex]. Leningrad, Nauka, 1979. 113 p. (In Russian)

5. Shishkin M.A., Shkarubo S.I., Markina N.M., Molchanova E.V., Kalaus S.V. The main outcomes of developing a comprehensive state geological map at scale 1:1000000 (3rd generation), sheet R-41 (Amderma). Geologiya i mineral’nye resursy Evropeiskogo Severo-Vostoka Rossii: materialy XV Geologicheskogo s”ezda Respubliki Komi [Geology and Mineral Resources of the European Northeast of Russia: Proc. XV Geol. Congr. of the Komi Republic]. Vol. II. Syktyvkar, Inst. Geol. Komi NTs Ural. Otd. Ross. Akad. Nauk, 2009, pp. 183–185. (In Russian)

6. Shaybekov R.I. New data on the age of rocks of the gabbro-dolerite complex of the Pai-Khoi anticlinorium (Russia, Nenets Autonomous Okrug). Izv. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2012, no. 4, pp. 67–73. (In Russian)

7. Shaibekov R.I., Ulyasheva N.S., Khubanov V.B., Isaenko S.I., Tropnikov E.M., Ignatiev G.V. Metagabbro-dolerites of the central part of the Kara Depression, Nenets Autonomous District, Russia: Influence of an impact event and the U–Pb (LA–ICP–MS) age. Geochem. Int., 2023, vol. 61, no. 4, pp. 359–373. https://doi.org/10.1134/S0016702923040110.

8. Zhegunov P.S., Starikova E.V., Petrov D.A., Lvov P.A. New data on the composition and age of gabbro-dolerites of the Oyu complex of the Yamb-Pe Ridge, northwestern Pay-Khoy. Lithosphere, 2019, vol. 19, no. 3, pp. 436–450. https://doi.org/10.24930/1681-9004-2019-19-3-436-450. (In Russian)

9. Davydov K.V., Miklyaev A.S., Davydova E.I. Subvolcanic bodies of plagioclase porphyrites of the Yamb-Pe upland (Pay-Khoy) In: Fishman M.V. (Ed.) Magmatizm, metamorfizm i metallogeniya severa Urala i Pai-Khoya [Magmatism, Metamorphism, and Metallogeny of the Northern Urals and Pay-Khoy]. Syktyvkar, Komi Fil. Akad. Nauk SSSR, 1972, pp. 42–44. (In Russian)

10. Shaibekov R.I. Mineralogy of platinum-group element mineralization in basaltoids of the Pay-Khoy anticlinorium. Extended Abstract of Cand. Geol-Mineral. Sci. Diss. Syktyvkar, 2011. 19 p. (In Russian)

11. Warr L. IMA–CNMNC approved mineral symbols Mineral. Mag., 2021, vol. 85, no. 3, pp. 291–320. https://doi.org/10.1180/mgm.2021.43.

12. Bogatikov O.A., Petrov O.V., Morozov A.F. (Eds.) Petrograficheskij kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya [Petrographic Code of Russia. Igneous, Metamorphic, Metasomatic, and Impact Formations]. St. Petersburg, Izd. VSEGEI, 2009. 160 p. (In Russian)

13. Yudovich Ya.E., Ketris M.P., Rybina N.V. Geohimiya titana [Geochemistry of Titanium]. Syktyvkar, Inst. Geol. Komi NTs Ural. Otd. Ross. Akad. Nauk, 2018. 432 p. (In Russian)

14. Jensen L.S. A New Cation Plot for Classifying Subalkalic Volcanic Rocks. Ontario Division of Mines. Miscellaneous Paper 66. Toronto, Minist. Nat. Resour., 1976. 22 p.

15. Irvine T.N., Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 1971, vol. 8, no. 5, pp. 523–548. https://doi.org/10.1139/e71-055.

16. Sun S.-s., McDonough W.F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and process. In: Saunders A.D., Norrey M.J. (Eds.) Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ. No. 42. Oxford, Blackwell Sci. Publ., 1989. pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

17. Cabanis B., Lecolle M. Le diagramme La/10–Y/15–Nb/8: Un outil pour la discrimination des series volcaniques et en evidence des mélange et/ot de vontamination crustale. C. R. Acad. Sci., Ser. 2: Mec., Phys., Chim., Sci. Terre Univers, 1989, t. 309, no. 20, pp. 2023–2029. (In French)

18. Pearce J.A., Cann J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 1973, vol. 19, no. 2, pp. 290–300. https://doi.org/10.1016/0012-821X(73)90129-5.

19. Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S., Taylor R.N. Thermal and chemical structure of the Iceland plume. Earth Planet. Sci. Lett., 1997, vol. 153, nos. 3–4, pp. 197–208. https://doi.org/10.1016/S0012-821X(97)00170-2.

20. Condie K.C. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos, 2005, vol. 79, nos. 3–4, pp. 491–504. https://doi.org/10.1016/j.lithos.2004.09.014.

21. Yang G., Li Y., Safonova I., Yi S., Tong L., Seltmann R. Early Carboniferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: Implications for a supra-subduction system. Int. Geol. Rev., 2014, vol. 56, no. 7, pp. 823–844. https://doi.org/10.1080/00206814.2014.902757.

22. Hirschmann M.M., Stolper E.M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol., 1996, vol. 124, no. 2, pp. 185–208. https://doi.org/10.1007/S004100050184.

23. Turkina O.M. Izokh A.E. Paleoproterozoic dikes of the southern Siberian craton as indicators of an enriched subcontinental lithosphere. Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy soveshchaniya [Proc. Conf.: Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (From Ocean to Continent)]. Vol. 19. Irkutsk, Inst. Zemnoi Kory Sib. Otd. Ross. Akad. Nauk, 2021, pp. 236–238. (In Russian)

24. Safonova I.Yu., Simonov V.A., Buslov M.M., Ota T., Maruyama Sh. Neoproterozoic basalts of the PaleoAsian Ocean (Kurai accretionary zone, Gorny Altai, Russia): Geochemistry, petrogenesis, and geodynamics. Russ. Geol. Geophys., 2008, vol. 49, no. 4, pp. 254–271. https://doi.org/10.1016/j.rgg.2007.09.011.

25. Shokhonova M.N., Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Paderin I.P. Paleoproterozoic basaltoids of the North Baikal volcanoplutonic belt of the Siberian craton: Age and petrogenesis. Russ. Geol. Geophys., 2010, vol. 51, no. 8, pp. 815–832. https://doi.org/10.1016/j.rgg.2010.07.001.

26. Lightfoot P.C., Hawkesworth C.J., Hergt J., Naldrett A.J., Gorbachev N.S., Fedorenko V.A., Doherty W. Remobilisation of the continental lithosphere by a mantle plume: Major-, trace-element, and Sr-, Nd-, and Pb-isotopic evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol., 1993, vol. 114, no. 2, pp. 171–188. https://doi.org/10.1007/BF00307754.


Review

For citations:


Shaibekov R.I., Shmakova A.M., Tropnikov E.M., Ignatiev G.V. New Insights into the Petrography and Mineralogy of the Malenkiy Site (Pay-Khoy, Nenets Autonomous District). Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2024;166(3):525-547. (In Russ.) https://doi.org/10.26907/2542-064X.2024.3.525-547

Views: 129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)