Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Asymmetrization of the Indacene Core in the Molecules of Monobromine-Containing BODIPY Derivatives: Experiment and Theory

https://doi.org/10.26907/2542-064X.2024.3.373-386

Abstract

The molecular structures and crystal packings of three new BODIPY compounds with a bromine atom in the α-, β-, and γ-position were analyzed. The asymmetrization of the central conjugated fragment was demonstrated for the first time, with its expression and localization determined by the position of the substituent relative to the borofluoride core of the molecule.

About the Authors

L. V. Frantsuzova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Russian Federation

Kazan, 420088.


Competing Interests:

The authors declare no conflicts of interest.



D. P. Gerasimova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Russian Federation

Kazan, 420088.


Competing Interests:

The authors declare no conflicts of interest.



O. A. Lodochnikova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan Federal University
Russian Federation

Kazan, 420088.

Kazan, 420008.


Competing Interests:

The authors declare no conflicts of interest.



References

1. Poddar M., Misra R. Recent advances of BODIPY based derivatives for optoelectronic applications. Coord. Chem. Rev., 2020, vol. 421, art. 213462. http://dx.doi.org/10.1016/j.ccr.2020.213462.

2. Bañuelos J. BODIPY dye, the most versatile fluorophore ever? Chem. Rec., 2016, vol. 16, no. 1, pp. 335–348. https://doi.org/10.1002/tcr.201500238.

3. Ulrich G., Ziessel R., Harriman A. The chemistry of fluorescent Bodipy dyes: Versatility unsurpassed. Angew. Chem., Int. Ed., 2008, vol. 47, no. 7, pp. 1184–1201. https://doi.org/10.1002/anie.200702070.

4. Liu Z., Jiang Z., Yan M., Wang X. Recent progress of BODIPY dyes with aggregation-induced emission. Front. Chem., 2019, vol. 7, art. 712. https://doi.org/10.3389/fchem.2019.00712.

5. Sheldrick G.M. SHELXT: Integrating space group determination and structure solution. Acta Crystallogr., Sect. A: Found. Adv., 2014, vol. 70, pt. a1, p. C1437. http://dx.doi.org/10.1107/S2053273314085623.

6. Sheldrick G.M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Adv., 2008, vol. 64, pt. 1, pp. 112–122. https://doi.org/10.1107/s0108767307043930.

7. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, vol. 42, pp. 339–341. http://dx.doi.org/10.1107/S0021889808042726.

8. Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr., Sect D: Biol. Crystallogr., 2009, vol. 65, pt. 2, pp. 148–155. https://doi.org/10.1107/S090744490804362X.

9. Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., van de Streek J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr., 2006, vol. 39, pp. 453–457. http://dx.doi.org/10.1107/S002188980600731X.

10. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16, Revision A.03. Wallingford, Gaussian, Inc., 2016.

11. Chai J.-D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom– atom dispersion corrections. Phys. Chem. Chem. Phys., 2008, vol. 10, no. 44, pp. 6615–6620. https://doi.org/10.1039/B810189B.

12. Kendall R.A., Dunning T.H., Jr., Harrison R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys., 1992, vol. 96, no. 9, pp. 6796–6806. https://doi.org/10.1063/1.462569.

13. Bader R.F.W. Atoms in Molecules: A Quantum Theory. Ser.: International Series of Monographs on Chemistry. Vol. 22. Oxford, Clarendon Press, 1990. xviii, 438 p.

14. Keith T.A. AIMAll (Version 19.10.12). URL: https://aim.tkgristmill.com.

15. Gorbe M., Costero A.M., Sancenón F., Martínez-Máñez R., Ballesteros-Cillero R., Ochando L.E., Chulvi K., Gotor R., Gil S. Halogen-containing BODIPY derivatives for photodynamic therapy. Dyes Pigm., 2019, vol. 160, pp. 198–207. https://doi.org/10.1016/j.dyepig.2018.08.007.

16. Özcan E., Dedeoglu B., Chumakov Y., Gürek A., Zorlu Y., Çoşut B., Ayhan M.M. Halogenbonded BODIPY frameworks with tunable optical features. Chem. – Eur. J., 2021, vol. 27, no. 5, pp. 1603–1608. https://doi.org/10.1002/chem.202003945.

17. Prasannan D., Raghav D., Sujatha S., Hareendrakrishna kumar H., Rathinasamy K., Arunkumar C. Synthesis, structure, photophysical, electrochemical properties and antibacterial activity of brominated BODIPYs. RSC Adv., 2016, vol. 6, no. 84, pp. 80808–80824. https://doi.org/10.1039/C6RA12258B.

18. Ayhan M.M., Özcan E., Dedeoglu B., Chumakov Y., Zorlu Y., Coşut B. Carbon (sp3) tetrel bonding mediated BODIPY supramolecular assembly via unprecedented synergy of Csp3...N and Csp3...F pair interactions. CrystEngComm, 2021, vol. 23, no. 2, pp. 268–272. https://doi.org/10.1039/D0CE01640C.

19. Guseva G.B., Antina E.V., Nuraneeva E.N., Berezin M.B., V‘yugin A.I. Crystal structure and spectral luminescent properties of monoiodo-substituted borofluoride complex with dipyrrolylmethene. J. Struct. Chem., 2014, vol. 55, no. 6, pp. 1091–1096. https://doi.org/10.1134/S0022476614060122.

20. Huynh A.M., Menges J., Vester M., Dier T., Huch V., Volmer D.A., Jung G. Monofluorination and trifluoromethylation of BODIPY dyes for prolonged single-molecule detection. ChemPhysChem, 2016, vol. 17, no. 3, pp. 433–442. https://doi.org/10.1002/cphc.201500869.

21. Mu H., Miki K., Kubo T., Otsuka K., Ohe K. Substituted meso-vinyl-BODIPY as thiol-selective fluorogenic probes for sensing unfolded proteins in the endoplasmic reticulum. Chem. Commun., 2021, vol. 57, no. 14, pp. 1818–1821. https://doi.org/10.1039/D0CC08160D.

22. Lopez C.S., de Lera A.R. Bond ellipticity as a measure of electron delocalization in structure and reactivity. Curr. Org. Chem., 2011, vol. 15, no. 20, pp. 3576–3593. http://dx.doi.org/10.2174/138527211797636228.

23. Lopes T.O., Scalabrini Machado D.F., Risko C., Brédas J.-L., de Oliveira H.C.B. Bond ellipticity alternation: an accurate descriptor of the nonlinear optical properties of π-conjugated chromophores. J. Phys. Chem. Lett., 2018, vol. 9, no. 6, pp. 1377–1383. https://doi.org/10.1021/acs.jpclett.8b00478.


Review

For citations:


Frantsuzova L.V., Gerasimova D.P., Lodochnikova O.A. Asymmetrization of the Indacene Core in the Molecules of Monobromine-Containing BODIPY Derivatives: Experiment and Theory. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2024;166(3):373-386. (In Russ.) https://doi.org/10.26907/2542-064X.2024.3.373-386

Views: 162


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)