Antioxidant and Antidiabetic Properties of the Water Extract from Sigoise Olive Cultivar (Olea europaea L.), El Oued Region (Algeria)
https://doi.org/10.26907/2542-064X.2024.3.445-458
Abstract
Olive tree leaves (Olea europaea L.) have been widely used in Mediterranean traditional medicine to prevent and treat various ailments. This study investigated the effects of consuming a water extract of Sigoise olive leaves on antioxidant levels and type II diabetes. The extract was prepared by steeping 10 g of dried olive leaves in 500 mL of boiling water and then given to 20 Algerian volunteers (10 diabetic subjects and 10 healthy controls), who consumed it twice a day for a month. The volunteers were screened by biochemical blood tests before and by the end of the experiment. The antioxidant activity was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl-based assay, 35.3 ± 0.5 mg/mL) and FRAP assays (ferric reducing antioxidant power assay, 8.3 ± 0.1 mg/mL). The quantitative analysis revealed high contents of total polyphenols (41.8 ± 0.8 mg gallic acid equivalent per 1 g of extract) and total flavonoids (14.3 ± 0.8 mg rutin equivalent per 1 g of extract). The hypoglycemic effect of the extract was shown, thus confirming that it helps improve renal function and prevents cardiovascular disorders in type II diabetic patients. No toxic effects on kidney or liver function were observed. Despite clear health-boosting benefits, further research is needed to fully validate them clinically.
About the Authors
M. L. TliliAlgeria
Mohammed Laid Tlili, Doctor of Biochemistry, Lecturer, Department of Cellular and Molecular Biology, Laboratory of Biology, Environment, and Health; Research Associate, Department of Biological Sciences, Biogeochemistry of Desert Environments Laboratory,
N48 Hwy., El Oued, 39000;
1er November 1954 Ave., Ouargla, 30000.
Competing Interests:
The authors declare no conflicts of interest.
R. Hammoudi
Algeria
Roukia Hammoudi, Doctor of Biochemistry, Lecturer, Department of Biological Sciences, Biogeochemistry of Desert Environments Laboratory,
1er November 1954 Ave., Ouargla, 30000.
Competing Interests:
The authors declare no conflicts of interest.
S. Touati
Algeria
Said Touati, Doctor of Biology, Lecturer, Department of Cellular and Molecular Biology,
N48 Hwy., El Oued, 39000.
Competing Interests:
The authors declare no conflicts of interest.
A. Belimi
Algeria
Asma Belimi, PhD in Biochemistry, Lecturer, Department of Cellular and Molecular Biology,
N48 Hwy., El Oued, 39000.
Competing Interests:
The authors declare no conflicts of interest.
S. Lamoudi
Algeria
Sara Lamoudi, PhD in Biochemistry, Lecturer, Department of Cellular and Molecular Biology,
N48 Hwy., El Oued, 39000.
Competing Interests:
The authors declare no conflicts of interest.
References
1. Issaad F.Z., Abdessemed A., Bouhedjar K., Bouyahmed H., Derdour M., Ouffroukh K., Fellak A., Dems M.A.S., Chihoub S., Bechlem R., Mahrouk A., Houasnia M., Belaidi A., Moumed K., Sebai Z., Saidani F., Akmouche H. Classification of Algerian olive oils: Physicochemical properties, polyphenols and fatty acid composition combined with machine learning models. J. Food Compos. Anal., 2024, vol. 125, art. 105812. https://doi.org/10.1016/j.jfca.2023.105812.
2. Mendil M., Sebai A. Catalogue des variétés algériennes de l’olivier. Ministère de l’Agriculture et du Développement Rural. ITAF, 2006. 99 p. (In French)
3. Idoui T., Bouchefra A. The black olive fruits of Jijelian Sigoise variety (Eastern Algeria): Quality evaluation for possible use as table olives and pesticides research. Online J. Sci. Technol., 2014, vol. 4, no. 1, pp. 45–52.
4. Žugčić T., Abdelkebir R., Alcantara C., Collado M.C., García-Pérez J.V., MeléndezMartínez A.J., Režek Jambrak A., Lorenzo J.M., Barba F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol., 2019, vol. 83, pp. 63–77. https://doi.org/10.1016/j.tifs.2018.11.005.
5. Rostamzadeh A., Amini-Khoei H., Mardani Korani M.J., Rahimi-Madiseh M. Comparison effects of olive leaf extract and oleuropein compounds on male reproductive function in cyclophosphamide exposed mice. Heliyon, 2020, vol. 6, no. 4, art. e03785. https://doi.org/10.1016/j.heliyon.2020.e03785.
6. Nunes M.A., Pimentel F.B., Costa A.S.G., Alves R.C., Oliveira M.B.P.P. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innovative Food Sci. Emerging Technol., 2016, vol. 35, pp. 139–148. https://doi.org/10.1016/j.ifset.2016.04.016.
7. Kaeidi A., Esmaeili-Mahani S., Sheibani V., Abbasnejad M., Rasoulian B., Hajializadeh Z., Afrazi S. Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: In vitro and in vivo studies. J. Ethnopharmacol., 2011, vol. 136, pp. 188–196. https://doi.org/10.1016/j.jep.2011.04.038.
8. Khlif I., Jellali K., Michel T., Halabalaki M., Skaltsounis A.L., Allouche N. Characteristics, phytochemical analysis and biological activities of extracts from Tunisian chetoui Olea europaea variety. J. Chem., 2015, vol. 2015, no. 1, art. 18731. https://doi.org/10.1155/2015/418731.
9. Saiah H., Saiah W., Mokhtar M., Aburjai T. Antioxidant and hepatoprotective potentials of olive (Olea europaea L. var. Sigoise) leaves against carbon tetrachloride-induced hepatic damage in rats, and investigation of its constituents by high-performance liquid chromatography-mass spectrometry. Int. Food Res. J., 2022, vol. 29, no. 3. pp. 607–618. https://doi.org/10.47836/ifrj.29.3.13.
10. Khelouf I., Karoui I.J., Lakoud A., Hammami M., Abderrabba M. Comparative chemical composition and antioxidant activity of olive leaves Olea europaea L. of Tunisian and Algerian varieties. Heliyon, 2023, vol. 9, no. 12, art. e22217. https://doi.org/10.1016/j.heliyon.2023.e22217.
11. Mansour H.M.M., Zeitoun A.A., Abd-Rabou H.S., El Enshasy H.A., Dailin D.J., Zeitoun M.A.A., El-Sohaimy S.A. Antioxidant and anti-diabetic properties of olive (Olea europaea) leaf extracts: In vitro and in vivo evaluation. Antioxidants, 2023, vol. 12, no. 6, art. 1275. https://doi.org/10.3390/antiox12061275.
12. Zhang Z., Huang Q., Zhao D., Lian F., Li X., Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front. Endocrinol., 2023, vol. 14, art. 1112363. https://doi.org/10.3389/fendo.2023.1112363.
13. Patel D.K., Prasad S.K., Kumar R., Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed., 2012, vol. 2, no. 4, pp. 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X.
14. Tlili M.L., Hammoudi R., Hadj-Mahammed M. In vivo and in vitro antidiabetic properties of alkaloids extract from Salvia chudaei. Acta Period. Technol., 2021, vol. 52, pp. 45–53. https://doi.org/10.2298/APT2152045T.
15. Halimi C.W., Laamari M., Goldarazena A. A preliminary survey of olive grove in Biskra (Southeast Algeria) reveals a high diversity of thrips and new records. Insects, 2022, vol. 13, no. 5, art. 397. https://doi.org/10.3390/insects13050397.
16. Bruneton J. Pharmacognosie, phytochimie, plantes médicinales. 4e ed. Tech & Doc, EM inter, 2009. 1269 p. (In French)
17. Boizot N., Charpentier J.-P. Méthode rapide d’évaluation du contenu en composés phénoliques des organes d’un arbre forestier. Cah. Tech. l’INRA., 2006, numero spec., p. 79–82. (In French)
18. Quettier-Deleu C., Gressier B., Vasseur J., Dine T., Brunet C., Luyckx M., Cazin M., Cazin J.-C., Bailleul F., Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, vol. 72, nos. 1–2, pp. 35–42. https://doi.org/10.1016/S0378-8741(00)00196-3.
19. Sharma A., Bhardwaj S., Mann A.S., Jain A., Kharya M.D. Screening methods of antioxidant activity: An overview. Pharmacogn. Rev., 2007, vol. 1, no. 2, pp. 232–238.
20. Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, vol. 239, no. 1, pp. 70–76. https://doi.org/10.1006/abio.1996.0292.
21. Almutairi R.A., Alharbi W.A., Alhazmi M.H., Alkheraiji D.A., Altaifi L.A., Almohammadi R.A., Hammouda S.A. Impact of olive leaves consumption on blood sugar level in adults with type-2 diabetes. A clinical trial: Almadinah Almunawrah, Ksa. Int. J. Adv. Res., 2017, vol. 5, no. 1, pp. 210–217. http://dx.doi.org/10.21474/IJAR01/2740.
22. Ghasemi S., Koohi D.E., Emmamzadehhashemi M.S.B., Khamas S.S., Moazen M., Hashemi A.K., Amin G., Golfakhrabadi F., Yousefi Z., Yousefbeyk F. Investigation of phenolic compounds and antioxidant activity of leaves extracts from seventeen cultivars of Iranian olive (Olea europaea L.). J. Food Sci. Technol., 2018, vol. 55, no. 11, pp. 4600–4607. https://doi.org/10.1007/s13197-018-3398-1.
23. Hayes J.E., Allen P., Brunton N., O’Grady M.N., Kerry J.P. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chem., 2011, vol. 126, no. 3, pp. 948–955. https://doi.org/10.1016/j.foodchem.2010.11.092.
24. Feng S., Zhang C., Liu L., Xu Z., Chen T., Zhou L., Yuan M., Li T., Ding C. Comparison of phenolic compounds in olive leaves by different drying and storage methods. Separations, 2021, vol. 8, no. 9, art. 156. https://doi.org/10.3390/separations8090156.
25. Akli H., Grigorakis S., Kellil A., Loupassaki S., Makris D.P., Calokerinos A., Mati A., Lydakis-Simantiris N. Extraction of polyphenols from olive leaves employing deep eutectic solvents: The application of chemometrics to a quantitative study on antioxidant compounds. Appl. Sci., 2022, vol. 12, no. 2, art. 831. https://doi.org/10.3390/app12020831.
26. Cosme P., Rodríguez A.B., Espino J., Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants, 2020, vol. 9, no. 12, art. 1263. https://doi.org/10.3390/antiox9121263.
27. Cheurfa M., Abdallah H.H., Allem R., Noui A., Picot-Allain C.M.N., Mahomoodally F. Hypocholesterolaemic and antioxidant properties of Olea europaea L. leaves from Chlef province, Algeria using in vitro, in vivo and in silico approaches. Food Chem. Toxicol., 2019, vol. 123, pp. 98–105. https://doi.org/10.1016/j.fct.2018.10.002.
28. Visioli F., Galli C. Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr., 2002, vol. 42, no. 3, pp. 209–221. https://doi.org/10.1080/10408690290825529.
29. Al-Sharari S.D., Al-Rejaie S.S., Abuohashish H.M., Ahmed M.M., Hafez M.M. Rutin attenuates hepatotoxicity in high-cholesterol-diet-fed rats. Oxid. Med. Cell. Longevity, 2016, vol. 2016, no. 1, art. 5436745. https://doi.org/10.1155/2016/5436745.
30. Wang C., Li J., Lv X., Zhang M., Song Y., Chen L., Liu Y. Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. Eur. J. Pharmacol., 2009, vol. 620, nos. 1–3, pp. 131–137. https://doi.org/10.1016/j.ejphar.2009.07.027.
31. Jemai H., Bouaziz M., Fki I., El Feki A., Sayadi S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem.-Biol. Interact., 2008, vol. 176, nos. 2–3, pp. 88–98. https://doi.org/10.1016/j.cbi.2008.08.014.
32. Benavente-García O., Castillo J., Lorente J., Ortuño A., Del Rio J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem., 2000, vol. 68, no. 4, pp. 457–462. https://doi.org/10.1016/S0308-8146(99)00221-6.
33. Đorđević T., Sarić- Krsmanović M., Gajić Umiljendić J. Phenolic compounds and allelopathic potential of fermented and unfermented wheat and corn straw extracts. Chem. Biodiversity, 2019, vol. 16, no. 2, art. e1800420. https://doi.org/10.1002/cbdv.201800420.
34. Edziri H., Jaziri R., Chehab H., Verschaeve L., Flamini G., Boujnah D., Hammami M., Aouni M., Mastouri M. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon, 2019, vol. 5, no. 5, art. e01604. https://doi.org/10.1016/j.heliyon.2019.e01604.
35. Siddhuraju P., Becker K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chem., 2007, vol. 101, no. 1, pp.10–19. https://doi.org/10.1016/j.foodchem.2006.01.004.
36. Jeong S.-M., Kim S.-Y., Kim D.-R., Jo S.-C., Nam K.C., Ahn D.U., Lee S.-C. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem., 2004, vol. 52, no. 11, pp. 3389–3393. https://doi.org/10.1021/jf049899k.
37. Komaki E., Yamaguchi S., Maru I., Kinoshita M., Kakehi K., Ohta Y., Tsukada Y. Identification of anti-α-amylase components from olive leaf extracts. Food Sci. Technol. Res., 2003, vol. 9, no. 1, pp. 35–39. https://doi.org/10.3136/fstr.9.35.
38. Sato H., Genet C., Strehle A., Thomas C., Lobstein A., Wagner A., Mioskowski C., Auwerx J., Saladin R. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun., 2007, vol. 362, no. 4, pp. 793–798. https://doi.org/10.1016/j.bbrc.2007.06.130.
39. Jemai H., El Feki A., Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem., 2009, vol. 57, no. 19, pp. 8798–8804. https://doi.org/10.1021/jf901280r.
40. Eidi A., Eidi M., Darzi R. Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytother. Res., 2009, vol. 23, no. 3, pp. 347–350. https://doi.org/10.1002/ptr.2629.
41. Al-Azzawie H.F., Alhamdani M.-S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci., 2006, vol. 78, no. 12, pp. 1371–1377. https://doi.org/10.1016/j.lfs.2005.07.029.
42. Gonzalez M., Zarzuelo A., Gamez M.J., Utrilla M.P., Jimenez J., Osuna I. Hypoglycemic activity of olive leaf. Planta Med., 1992, vol. 58, no. 6, pp. 513–515. https://doi.org/10.1055/s-2006-961538.
43. Wainstein J., Ganz T., Boaz M., Bar Dayan Y., Dolev E., Kerem Z., Madar Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food, 2012, vol. 15, no. 7, pp. 605–610. https://doi.org/10.1089/jmf.2011.0243.
44. Laaksonen D.E., Lakka T.A., Lakka H.-M., Nyyssönen K., Rissanen T., Niskanen L.K., Salonen J.T. Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle- aged men. Diabetic Med., 2002, vol. 19, no. 6, pp. 456–464. https://doi.org/10.1046/j.1464-5491.2002.00707.x.
45. Shen Y., Song S.J., Keum N., Park T. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evidence-Based Complementary Altern. Med., 2014, vol. 2014, no. 1, art. 971890. https://doi.org/10.1155/2014/971890.
46. Levy J., Stern Z., Gutman A., Naparstek Y., Gavin III J.R., Avioli L.V. Plasma calcium and phosphate levels in an adult noninsulin-dependent diabetic population. Calcif. Tissue Int., 1986, vol. 39, no. 5, pp. 316–318. https://doi.org/10.1007/BF02555197.
47. Kim M.K., Kim G., Jang E.H., Kwon H.S., Baek K.H., Oh K.W., Lee J.H., Yoon K.-H., Lee W.C., Lee K.W., Son H.Y., Kang M.I. Altered calcium homeostasis is correlated with the presence of metabolic syndrome and diabetes in middle-aged and elderly Korean subjects: The Chungju Metabolic Disease Cohort study (CMC study). Atherosclerosis, 2010, vol. 212, no. 2, pp. 674–681. https://doi.org/10.1016/j.atherosclerosis.2010.07.005.
48. Mears D. Regulation of insulin secretion in islets of Langerhans by Ca2+ channels. J. Membr. Biol., 2004, vol. 200, no. 2, pp. 57–66. https://doi.org/10.1007/s00232-004-0692-9.
49. Ojuka E.O., Jones T.E., Nolte L.A., Chen M., Wamhoff B.R., Sturek M., Holloszy J.O. Regulation of GLUT4 biogenesis in muscle: Evidence for involvement of AMPK and Ca2+. Am. J. Physiol.-Endocrinol. Metab., 2002, vol. 282, no. 5, pp. E1008–E1013. https://doi.org/10.1152/ajpendo.00512.2001.
50. Lorenzo C., Hanley A.J., Rewers M.J., Haffner S.M. Calcium and phosphate concentrations and future development of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetologia, 2014, vol. 57, no. 7, pp. 1366–1374. https://doi.org/10.1007/s00125-014-3241-9.
Review
For citations:
Tlili M.L., Hammoudi R., Touati S., Belimi A., Lamoudi S. Antioxidant and Antidiabetic Properties of the Water Extract from Sigoise Olive Cultivar (Olea europaea L.), El Oued Region (Algeria). Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2024;166(3):445-458. https://doi.org/10.26907/2542-064X.2024.3.445-458