Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Temperature dependences of gas transport parameters of ladder-like polyphenylsilsesquioxane

https://doi.org/10.26907/2542-064X.2025.4.689-701

Abstract

The temperature dependences of the diffusion, solubility, and permeability coefficients for ladder-like polyphenylsilsesquioxane (L-PPSQ) samples with molecular weights of 400, 600, and 1000 kDa were analyzed. A comparison, in terms of the gas transport parameters and temperature coefficients, with other silicon-containing polymers revealed that L-PPSQ is most similar to glassy polyvinyltrimethylsilane (PVTMS) rather than to polydimethylsiloxane (PDMS), which is structurally related to it. The heat of sorption values obtained for the studied samples using the temperature dependences are consistent with those from the literature for polytrimethylsilylpropyne (PTMSP), while their diffusion activation energies are more in agreement with PDMS and PVTMS, which may indicate the presence of enclosed free volume elements in L-PPSQ, comparable in size to the ones in PTMSP. The observed tendency of the permeability coefficient to increase with temperature confirms the dominant contribution of the diffusion component of permeability in L-PPSQ. The molecular weight of L-PPSQ was found to have no influence on its gas transport properties in the range of 400–1000 kDa. Therefore, the production of asymmetric and composite membranes is limited solely by the mechanical properties and solubility of L-PPSQ with different molecular weights. 

About the Authors

V. E. Ryzhikh
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Victoria E. Ryzhikh, Cand. Sci. (Chemistry), Researcher, Laboratory of Membrane Material Science (Sector of Membrane Gas Separation) 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



R. Yu. Nikiforov
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Roman Yu. Nikiforov, Cand. Sci. (Chemistry), Junior Researcher, Laboratory of Membrane Material Science (Sector of Membrane Gas Separation) 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



E. V. Bashkova
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Россия

Ekaterina V. Bashkova, Research Engineer, Laboratory of Polymer Membranes, A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Junior Researcher, Laboratory of Organosilicon Compounds, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Postgraduate Student, Department of Chemical Physics of Functional Materials, Phystech School of Electronics, Photonics, and Molecular Physics, Moscow Institute of Physics and Technology 

Moscow 

Dolgoprudny 


Competing Interests:

The authors declare no conflicts of interest 



T. O. Ershova
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Россия

Tatyana O. Ershova, Cand. Sci. (Chemistry), Junior Researcher, Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Junior Researcher, Laboratory of Organosilicon Compounds, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



T. S. Anokhina
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Tatyana S. Anokhina, Cand. Sci. (Chemistry), Head of Laboratory of Polymeric Membranes 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



References

1. Robb W.L. Thin silicone membranes-their permeation properties and some applications. Ann. N. Y. Acad. Sci., 1968, vol. 146, no. 1, pp. 119–137. https://doi.org/10.1111/j.1749-6632.1968.tb20277.x.

2. Gringolts M.L., Bermeshev M.V., Starannikova L.E., Rogan Yu.V., Yampol’skii Yu.P., Finkel’shtein E.Sh. Synthesis and gas separation properties of metathesis polynorbornenes with different positions of one or two SiMe3 groups in a monomer unit. Polym. Sci., Ser. A, 2009, vol. 51, nos. 11–12, art. 1233–1240. https://doi.org/10.1134/S0965545X0911008X.

3. Bermeshev M.V., Syromolotov A.V., Gringolts M.L., Starannikova L.E., Yampolskii Y.P., Finkelshtein E.Sh. Synthesis of high molecular weight poly[3-{tris(trimethylsiloxy)silyl} tricyclononenes-7] and their gas permeation properties. Macromolecules, 2011, vol. 44, no. 17, pp. 6637–6640. https://doi.org/10.1021/ma201486d.

4. Chapala P., Bermeshev M., Starannikova L., Borisov I., Shantarovich V., Lakhtin V., Volkov V., Finkelshtein E. Synthesis and gas-transport properties of metathesis polytricyclononenes bearing three Me 3Si groups per monomer unit. Macromol. Chem. Phys., 2016, vol. 217, no. 17, pp. 1966–1976. https://doi.org/10.1002/macp.201600232.

5. Masuda T., Iguchi Y., Tang B.-Z., Higashimura T. Diffusion and solution of gases in substituted polyacetylene membranes. Polymer, 1988, vol. 29, no. 11, pp. 2041–2049. https://doi.org/10.1016/0032-3861(88)90178-4.

6. Sakaguchi T., Takeda A., Hashimoto T. Highly gas-permeable silanol-functionalized poly(diphenylacetylene)s: Synthesis, characterization, and gas permeation property. Macromolecules, 2011, vol. 44, no. 17, pp. 6810–6817. https://doi.org/10.1021/ma201280s.

7. Platé N.A., Bokarev A.K., Kaliuzhnyi N.E., Litvinova E.G., Khotimskii V.S., Volkov V.V., Yampol’skii Yu.P. Gas and vapor permeation and sorption in poly (trimetylsilylpropyne). J. Membr. Sci., 1991, vol. 60, no. 1, pp. 13–24. https://doi.org/10.1016/S0376-7388(00)80321-X.

8. Starannikova L.E., Teplyakov V.V. Gas permeability of poly[1-(trimethylsilyl)-1-propyne]: Evaluation of experimental data and calculation methods. Polym. Sci. Ser., A, 1997, vol. 39, no. 10, pp. 1142–1147.

9. Teplyakov V.V., Durgar’yan S.G. Temperature parameters of the gas permeability of polymers. Polym. Sci. U.S.S.R., 1984, vol. 26, no. 10, pp. 2415–2421. https://doi.org/10.1016/0032-3950(84)90155-2.

10. Stern S.A., Vaidyanathan R., Pratt J.R. Structure/permeability relationships of siliconcontaining polyimides. J. Membr. Sci., 1990, vol. 49, no. 1, pp. 1–14. https://doi.org/10.1016/s0376-7388(00)80774-7.

11. Nakagawa T., Nishimura T., Higuchi A. Morphology and gas permeability in copolyimides containing polydimethylsiloxane block. J. Membr. Sci., 2002, vol. 206, nos. 1–2, pp. 149–163. https://doi.org/10.1016/S0376-7388(01)00775-X.

12. Brown J.F., Jr., Vogt L.H., Jr., Katchman A., Eustance J.W., Kiser K.M., Krantz K.W. Double chain polymers of phenylsilsesquioxane. J. Am. Chem. Soc., 1960, vol. 82, no. 23, pp. 6194–6195. https://doi.org/10.1021/ja01508a054.

13. Andrianov K.A., Zhdanov A.A., Levin V.Y. Some physical properties of organosilicon ladder polymers. Annu. Rev. Mater. Res., 1978, vol. 8, pp. 313–326. https://doi.org/10.1146/annurev.ms.08.080178.001525.

14. Yang X-f., Cao C., Chen Z.-h., Liu J., Luo M.-x., Lai G.-q. Synthesis of ladder-like polyphenylsilsesquioxanes with fairly high regularity using 1,2-ethylenediamine as endo-template. Chin. J. Polym. Sci., 2015, vol. 33, no. 9, pp. 1305–1312. https://doi.org/10.1007/s10118-015-1678-z.

15. Yang X., Cao C., Chen Z., Liu J., Bassindale A.R., Lai G. Preparation and characterization of a type of ladder-like poly(phenyl silsesquioxane) based hybrid star-shaped copolymer of ε-caprolactone. J. Appl. Polym. Sci., 2015, vol. 132, no. 31, art. 42335. https://doi.org/10.1002/app.42335.

16. Choi S.-S., Lee A.S., Hwang S.S., Baek K.-Y. Structural control of fully condensed polysilsesquioxanes: Ladderlike vs cage structured polyphenylsilsesquioxanes. Macromolecules, 2015, vol. 48, no. 17, pp. 6063–6070. https://doi.org/10.1021/acs.macromol.5b01539.

17. Mi Y., Stern S.A. Gas permeability of a new silicone ring polymer: Isotactic poly(phenyl silsesquioxane). J. Polym. Sci., Part B: Polym. Phys., 1991, vol. 29, no. 4, pp. 389–393. https://doi.org/10.1002/polb.1991.090290401.

18. Anokhina T.S., Ershova T.O., Anisimov A.A., Temnikov M.N., Grushevenko E.A., Borisov I.L., Volkov A.V., Muzafarov A.M. Pervaporation and gas separation properties of highmolecular ladder-like polyphenylsilsesquioxanes. Polymers, 2023, vol. 15, no. 15, art. 3277. https://doi.org/10.3390/polym15153277.

19. Gordon A.J., Ford R.A. The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References. New York, NY, Wiley VCH, 1972. 537 p.

20. Shchegolikhina O.I., Pozdnyakova Y.A., Molodtsova Y.A., Korkin S.D., Bukalov S.S., Leites L.A., Lyssenko K.A., Peregudov A.S., Auner N., Katsoulis D.E. Synthesis and properties of stereoregular cyclic polysilanols: cis-[PhSi(O)OH]4, cis-[PhSi(O)OH]6, and tris-cis-tris-trans-[PhSi(O)OH]12. Inorg. Chem., 2002, vol. 41, no. 25, pp. 6892–6904. https://doi.org/10.3390/10.1021/ic020546h.

21. Raharjo R.D., Freeman B.D., Paul D.R., Sarti G.C., Sanders E.S. Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane). J. Membr. Sci., 2007, vol. 306, nos. 1–2, pp. 75–92. https://doi.org/10.1016/j.memsci.2007.08.014.


Review

For citations:


Ryzhikh V.E., Nikiforov R.Yu., Bashkova E.V., Ershova T.O., Anokhina T.S. Temperature dependences of gas transport parameters of ladder-like polyphenylsilsesquioxane. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(4):689-701. (In Russ.) https://doi.org/10.26907/2542-064X.2025.4.689-701

Views: 49

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)