Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Reduction of pore size in membranes from polyacrylonitrile by introducing 1,4-dioxane into the casting solution

https://doi.org/10.26907/2542-064X.2025.4.669-688

Abstract

The effect of adding 1,4-dioxane to casting solutions based on poly(acrylonitrile-co-methyl acrylate) (poly(AN-co-MA)) using solvents such as dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP) was investigated. The introduction of the soft precipitant altered the rheological properties of the studied solutions: it reduced viscosity in the poly(AN-co-MA)/NMP system and caused an opposite change in the poly(AN-co-MA)/DMSO system. A direct correlation was established between the solution viscosity and the deposition rate during membrane formation via phase inversion. The incorporation of 1,4-dioxane enabled controlled modification of the membrane morphology and filtration performance by reducing the average pore size. The reduction in the average pore size was more pronounced in the membranes with NMP than in the membranes with DMSO (up to 11.8 nm and 19.1 nm, respectively). During the filtration of crude oil and 100 g/L oil solution in toluene, the rejection of asphaltenes by the membranes of both types was over 98 %. These findings confirm the potential of 1,4-dioxane in the development of membranes with tailored properties for application in the petrochemical industry. 

About the Authors

A. P. Nebesskaya
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Aleksandra P. Nebesskaya, Junior Researcher, Laboratory of Polymeric Membranes 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



Yu. V. Shvorobey
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Yulia V. Shvorobey, Senior Laboratory Assistant, Laboratory of Polymeric Membranes 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



T. N. Lebedeva
G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Россия

Tatyana N. Lebedeva, Cand. Sci. (Chemistry), Researcher, Department of Scientific and Engineering Bases of Obtaining Functional Materials and Nanocomposites 

Ivanovo 


Competing Interests:

The authors declare no conflicts of interest 



K. V. Pochivalov
G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences
Россия

Konstantin V. Pochivalov, Dr. Sci. (Chemistry), Chief Researcher, Department of Scientific and Engineering Bases of Obtaining Functional Materials and Nanocomposites 

Ivanovo 


Competing Interests:

The authors declare no conflicts of interest 



A. A. Yushkin
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Alexey A. Yushkin, Cand. Sci. (Chemistry), Senior Researcher, Laboratory of Polymeric Membranes 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



A. V. Volkov
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Alexey V. Volkov, Dr. Sci. (Chemistry), Professor of Russian Academy of Sciences, Advisor to the Director, Chief Researcher, Laboratory of Polymeric Membranes 

Moscow 


Competing Interests:

The authors declare no conflicts of interest 



References

1. Han J., Forman G.S, Elgowainy A., Cai H., Wang M., DiVita V.B. A comparative assessment of resource efficiency in petroleum refining. Fuel, 2015, vol. 157, pp. 292–298. https://doi.org/10.1016/j.fuel.2015.03.038.

2. Sholl D.S., Lively R.P. Seven chemical separations to change the world. Nature, 2016, vol. 532, no. 7600, pp. 435–437. https://doi.org/10.1038/532435a.

3. Nebesskaya A.P., Balynin A.V., Yushkin A.A., Markelov A.V., Volkov V.V. Ultrafiltration separation of crude oil and waste oil. Membr. Membr. Technol., 2024, vol. 6, no. 5, pp. 350–356. https://doi.org/10.1134/S2517751624600821.

4. Fadeeva N.P., Volkova I.R., Kharchenko I.A., Elsuf’ev E.V., Fomenko E.V., Akimochkina G.V., Afanasova K.A., Nemtsev I.V., Tarasova L.S., Yushkin A.A., Nebesskaya A.P., Prozorovich V.G., Ivanets A.I., Ryzhkov I.I. Development of composite ultrafiltration membrane from fly ash microspheres and alumina nanofibers for efficient dye removal from aqueous solutions. Ceram. Int., 2024, vol. 50, no. 24, pt. A, pp. 52890–52903. https://doi.org/10.1016/j.ceramint.2024.10.141.

5. Lyadov A.S., Kochubeev A.A., Nebesskaya A.P. Regeneration of waste motor oils using membranes (a review). Pet. Chem., 2025, vol. 65, no. 1, pp. 1–9. https://doi.org/10.1134/S0965544124080139.

6. Sánchez-Arévalo C.M., Vincent-Vela M.C., Luján-Facundo M.-J., Álvarez-Blanco S. Ultrafiltration with organic solvents: A review on achieved results, membrane materials and challenges to face. Process Saf. Environ. Prot., 2023, vol. 177, pp. 118–137. https://doi.org/10.1016/j.psep.2023.06.073.

7. Duong A., Chattopadhyaya G., Kwok W.Y., Smith K.J. An experimental study of heavy oil ultrafiltration using ceramic membranes. Fuel, 1997, vol. 76, no. 9, pp. 821–828. https://doi.org/10.1016/S0016-2361(97)00074-4.

8. Chisca S., Musteata V.-E., Zhang W., Vasylevskyi S., Falca G., Abou-Hamad E., Emwas A.-H., Altunkaya M., Nunes S.P. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science, 2022, vol. 376, no. 6597, pp. 1105–1110. https://doi.org/10.1126/science.abm7686.

9. Lai W.-C., Smith K.J. Heavy oil microfiltration using ceramic monolith membranes. Fuel, 2001, vol. 80, no. 8, pp. 1121–1130. https://doi.org/10.1016/S0016-2361(00)00177-0.

10. Ashtari M., Ashrafizadeh S.N., Bayat M. Asphaltene removal from crude oil by means of ceramic membranes. J. Pet. Sci. Eng., 2012, vols. 82–83, pp. 44–49. https://doi.org/10.1016/j.petrol.2012.01.001.

11. Ashtari M., Bayat M., Sattarin M. Investigation on asphaltene and heavy metal removal from crude oil using a thermal effect. Energy Fuels, 2011, vol. 25, no. 1, pp. 300–306. https://doi.org/10.1021/ef100986m.

12. Tsang Mui Ching M.-J., Pomerantz A.E., Andrews A.B., Dryden P., Schroeder R., Mullins O.C., Harrison C. On the nanofiltration of asphaltene solutions, crude oils, and emulsions. Energy Fuels, 2010, vol. 24, no. 9, pp. 5028–5037. https://doi.org/10.1021/ef100645b.

13. Yushkin A.A., Balynin A.V., Nekhaev A.I., Volkov A.V. Separation of archipelago- and continent-type asphaltenes on ultrafiltration membranes. Membr. Membr. Technol., 2021, vol. 3, no. 2, pp. 139–145. https://doi.org/10.1134/S2517751621020098.

14. Barbier J., Marques J., Caumette G., Merdrignac I., Bouyssiere B., Lobinski R., Lienemann C.-P. Monitoring the behaviour and fate of nickel and vanadium complexes during vacuum residue hydrotreatment and fraction separation. Fuel Process. Technol., 2014, vol. 119, pp. 185–189. https://doi.org/10.1016/j.fuproc.2013.11.004.

15. Yushkin A.A., Balynin A.V., Nebesskaya A.P., Chernikova E.V., Muratov D.G., Efimov M.N., Karpacheva G.P. Acrylonitrile–acrylic acid copolymer ultrafiltration membranes for selective asphaltene removal from crude oil. Membranes, 2023, vol. 13, no. 9, art. 775. https://doi.org/10.3390/membranes13090775.

16. Rodriguez C., Sarrade S., Schrive L., Dresch-Bazile M., Paolucci D., Rios G.M. Membrane fouling in cross-flow ultrafiltration of mineral oil assisted by pressurised CO2. Desalination, 2002, vol. 144, nos. 1–3, pp. 173–178. https://doi.org/10.1016/S0011-9164(02)00308-9.

17. Marques J., Merdrignac I., Baudot A., Barré L., Guillaume D., Espinat D., Brunet S. Asphaltenes size polydispersity reduction by nano-and ultrafiltration separation methods–comparison with the flocculation method. Oil Gas Sci. Technol. – Rev. IFP, 2008, vol. 63, no. 1, pp. 139–149. https://doi.org/10.2516/ogst:2008003.

18. Nebesskaya A., Kanateva A., Borisov R., Yushkin A., Volkov V., Volkov A. Polyacrylonitrile ultrafiltration membrane for separation of used engine oil. Polymers, 2024, vol. 16, no. 20, art. 2910. https://doi.org/10.3390/polym16202910.

19. Marbelia L., Mulier M., Vandamme D., Muylaert K., Szymczyk A., Vankelecom I.F.J. Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling. Algal Res., 2016, vol. 19, pp. 128–137. https://doi.org/10.1016/j.algal.2016.08.004.

20. Yushkin A.A., Balynin A.V., Nebesskaya A.P., Efimov M.N., Muratov D.G., Karpacheva G.P. Oil deasphalting using ultrafiltration pan membranes. Membr. Membr. Technol., 2023, vol. 5, no. 6, pp. 454–466. https://doi.org/10.1134/S2517751623060094.

21. Yushkin A.A., Balynin A.V., Nebesskaya A.P., Efimov M.N., Bakhtin D.S., Baskakov S.A., Kanatieva A.Yu. Fabrication of ultrafiltration membranes from PAN composites and hydrophilic particles for isolation of heavy oil components. Membr. Membr. Technol., 2023, vol. 5, no. 4, pp. 290–301. https://doi.org/10.1134/S2517751623040078.

22. Moghadassi A.R., Bagheripour E., Hosseini S.M. Investigation of the effect of tetrahydrofuran and acetone as cosolvents in acrylonitrile–butadiene–styrene–based nanofiltration membranes. J. Appl. Polym. Sci., 2017, vol. 134, no. 26, art. 44993. https://doi.org/10.1002/app.44993.

23. Yushkin A.A., Efimov M.N., Malakhov A.O., Karpacheva G.P., Bondarenko G., Marbelia L., Vankelecom I.F.J., Volkov A.V. Creation of highly stable porous polyacrylonitrile membranes using infrared heating. React. Funct. Polym., 2021, vol. 158, art. 104793. https://doi.org/10.1016/j.reactfunctpolym.2020.104793.

24. Yushkin A., Basko A., Balynin A., Efimov M., Lebedeva T., Ilyasova A., Pochivalov K., Volkov A. Effect of acetone as co-solvent on fabrication of polyacrylonitrile ultrafiltration membranes by non-solvent induced phase separation. Polymers, 2022, vol. 14, no. 21, art. 4603. https://doi.org/10.3390/polym14214603.

25. Kim I.-C., Lee K.-H. Effect of various additives on pore size of polysulfone membrane by phase-inversion process. J. Appl. Polym. Sci., 2003, vol. 89, no. 9, pp. 2562–2566. https://doi.org/10.1002/app.12009.

26. Tsai H.-A., Ye Y.-L., Lee K.-R., Huang S.-H., Suen M.-C., Lai J.-Y. Characterization and pervaporation dehydration of heat-treatment PAN hollow fiber membranes. J. Membr. Sci., 2011, vol. 368, nos. 1–2, pp. 254–263. https://doi.org/10.1016/j.memsci.2010.11.057.

27. Wu Q.-Y., Liu B.-T., Li M., Wan L.-S., Xu Z.-K. Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights. J. Membr. Sci., 2013, vol. 437, pp. 227–236. https://doi.org/10.1016/j.memsci.2013.03.018.

28. Tham H.M., Wang K.Y., Hua D., Japip S., Chung T.-S. From ultrafiltration to nanofiltration: Hydrazine cross-linked polyacrylonitrile hollow fiber membranes for organic solvent nanofiltration. J. Membr. Sci., 2017, vol. 542, pp. 289–299. https://doi.org/10.1016/j.memsci.2017.08.024.

29. Pérez-Álvarez L., Matas J., Gómez-Galván F., Ruiz-Rubio L., León L.M., Vilas-Vilela J.L. Branched and ionic β-cyclodextrins multilayer assembling onto polyacrylonitrile membranes for removal and controlled release of triclosan. Carbohydr. Polym., 2017, vol. 156, pp. 143–151. https://doi.org/10.1016/j.carbpol.2016.09.020.

30. Barth C., Gonçalves M.C., Pires A.T.N., Roeder J., Wolf B.A. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. J. Membr. Sci., 2000, vol. 169, no. 2, pp. 287–299. https://doi.org/10.1016/S0376-7388(99)00344-0.

31. Yushkin A., Balynin A., Efimov M., Pochivalov K., Petrova I., Volkov A. Fabrication of polyacrylonitrile UF membranes by VIPS method with acetone as co-solvent. Membranes, 2022, vol. 12, no. 5, art. 523. https://doi.org/10.3390/membranes12050523.

32. Anokhina T., Borisov I., Yushkin A., Vaganov G., Didenko A., Volkov A. Phase separation within a thin layer of polymer solution as prompt technique to predict membrane morphology and transport properties. Polymers, 2020, vol. 12, no. 12, art. 2785. https://doi.org/10.3390/polym12122785.

33. Saini B., Sinha M.K., Dey A. Functionalized polymeric smart membrane for remediation of emerging environmental contaminants from industrial sources: Synthesis, characterization and potential applications. Process Saf. Environ. Prot., 2022, vol. 161, pp. 684–702. https://doi.org/10.1016/j.psep.2022.03.075.

34. Shenghui L., Jintuan Z., Haotian J., Zhou J. The establishment of PES/AMPS-PAN ultrafiltration membrane with the property of self-repairing both physical and chemical damage. J. Membr. Sci., 2023, vol. 687, art. 122051. https://doi.org/10.1016/j.memsci.2023.122051.

35. Raeva A., Matveev D., Bezrukov N., Grushevenko E., Zhansitov A., Kurdanova Z., Shakhmurzova K., Anokhina T., Khashirova S., Borisov I. Highly permeable ultrafiltration membranes based on polyphenylene sulfone with cardo fragments. Polymers, 2024, vol. 16, no. 5, art. 703. https://doi.org/10.3390/polym16050703.

36. Anokhina T., Raeva A., Sokolov S., Storchun A., Filatova M., Zhansitov A., Kurdanova Z., Shakhmurzova K., Khashirova S., Borisov I. Effect of composition and viscosity of spinning solution on ultrafiltration properties of polyphenylene sulfone hollow-fiber membranes. Membranes, 2022, vol. 12, no. 11, art. 1113. https://doi.org/10.3390/membranes12111113.

37. Apel P. Yu., Velizarov S., Volkov A.V., Eliseeva T.V., Nikonenko V.V., Parshina A.V., Pismenskaya N.D., Popov K.I., Yaroslavtsev A.B. Fouling and membrane degradation in electromembrane and baromembrane processes. Membr. Membr. Technol., 2022, vol. 4, no. 2, pp. 69–92. https://doi.org/10.1134/S2517751622020032.

38. Pabby A.K., Rizvi S.S.H., Requena A.M.S. Handbook of Membrane Separations. Chemical, Pharmaceutical, Food, and Biotechnological Applications. Boca Raton, FL, CRC Press, 2008. 1184 p. https://doi.org/10.1201/9781420009484.

39. Kimura K., Hane Y., Watanabe Y., Amy G., Ohkuma N. Irreversible membrane fouling during ultrafiltration of surface water. Water Res., 2004, vol. 38, nos. 14–15, pp. 3431–3441. https://doi.org/10.1016/j.watres.2004.05.007.

40. Shi X., Tal G., Hankins N.P., Gitis V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process Eng., 2014, vol. 1, pp. 121–138. https://doi.org/10.1016/j.jwpe.2014.04.003.


Review

For citations:


Nebesskaya A.P., Shvorobey Yu.V., Lebedeva T.N., Pochivalov K.V., Yushkin A.A., Volkov A.V. Reduction of pore size in membranes from polyacrylonitrile by introducing 1,4-dioxane into the casting solution. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(4):669-688. (In Russ.) https://doi.org/10.26907/2542-064X.2025.4.669-688

Views: 42

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)