Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Effect of steam sterilization on the morphology and mechanical properties of polyphenylene sulfone hollow fiber membranes

https://doi.org/10.26907/2542-064X.2025.4.644-657

Abstract

The effect of treatment of polyphenylene sulfone (PPSU) and polysulfone (PSU) hollow fiber membranes with superheated water steam under autoclaving conditions for 270 h was investigated for the first time. The resistance of these membranes to repeated steam sterilization, a key parameter for their application in the purification of media that may contain pathogenic organisms, was evaluated. PPSU membranes were found to exhibit high thermal stability and resistance to hydrolysis and retain their functional characteristics after multiple sterilization cycles. The obtained data underscore the potential of PPSU as a promising material for creating durable and reliable hollow fiber membranes to carry out processes that necessitate the use of repeated sterilization. 

About the Authors

A. Yu. Raeva
Kabardino-Balkarian State University named after H.M. Berbekov
Россия

Alisa Yu. Raeva, Junior Researcher, Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University named after H.M. Berbekov; Junior Researcher, Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences 

Nalchik 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



D. N. Matveev
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Dmitry N. Matveev, Cand. Sci. (Chemistry), Researcher, Laboratory of Polymeric Membranes 

 Moscow 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



T. S. Anokhina
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Tatyana S. Anokhina, Cand. Sci. (Chemistry), Head of Laboratory of Polymeric Membranes 

 Moscow 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



A. A. Zhansitov
Kabardino-Balkarian State University named after H.M. Berbekov
Россия

Azamat A. Zhansitov, Cand. Sci. (Chemistry), Senior Researcher, Center for Progressive Materials and Additive Technologies 

Nalchik 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



S. Yu. Khashirova
Kabardino-Balkarian State University named after H.M. Berbekov
Россия

Svetlana Yu. Khashirova, Dr. Sci. (Chemistry), Professor, Corresponding Member of Russian Academy of Sсiences, Vice-Rector for Research, Center for Progressive Materials and Additive Technologies 

Nalchik 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



V. V. Volkov
Kabardino-Balkarian State University named after H.M. Berbekov; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Vladimir V. Volkov, Dr. Sci. (Chemistry), Professor of Russian Academy of Sciences, Advisor to the Director, Chief Researcher, Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Chief Researcher, Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University named after H.M. Berbekov 

Nalchik 

Moscow 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



I. L. Borisov
Kabardino-Balkarian State University named after H.M. Berbekov; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Россия

Il’ya L. Borisov, Dr. Sci. (Chemistry), Leading Researcher, Laboratory of Polymeric Membranes, A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Leading Researcher, Center for Progressive Materials and Additive Technologies, Kabardino-Balkarian State University named after H.M. Berbekov 

Nalchik 


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов 



References

1. IHP-IX: Strategic Plan of the Intergovernmental Hydrological Programme: Science for a Water Secure World in a Changing Environment, Ninth Phase 2022-2029. Paris, UNESCO/Div. Water Sci., 2022. 51 p.

2. Skoczko I. Energy efficiency analysis of water treatment plants: Current status and future trends. Energies, 2025, vol. 18, no. 5, art. 1086. https://doi.org/10.3390/en18051086.

3. Dharani L., Umapriya R., Rohan J., Surendran G., Gokila M., Infanta M.J. Application of membrane technology for wastewater treatment. In: Shah M.P. (Ed.) Microbial Approach of Biofiltration in Industrial Wastewater Treatment for the Sustainability of Environment. Ser.: Environmental Science and Engineering. Cham, Springer, 2025, pp. 37–57. https://doi.org/10.1007/978-3-031-48150-5_3.

4. Regula C., Carretier E., Wyart Y., Gésan-Guiziou G., Vincent A., Boudot D., Moulin P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res., 2014, vol. 56, pp. 325–365. https://doi.org/10.1016/j.watres.2014.02.050.

5. Wagner J. Membrane Filtration Handbook: Practical Tips and Hints. Minnetonka, MN, Osmonics, 2001. 129 p. 6. Dai Z., Ronholm J., Tian Y., Sethi B., Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J. Tissue Eng., 2016, vol. 7, art. 2041731416648810. https://doi.org/10.1177/2041731416648810.

6. Kaur J. Chapter 24 – Advances in biomedical waste management technologies. In: Singh P., Verma P., Singh R., Ahamad A. Batalhão A.C.s. (Eds.) Waste Management and Resource Recycling in the Developing World. Amsterdam, Elsevier, 2023, pp. 543–573. https://doi.org/10.1016/B978-0-323-90463-6.00024-5.

7. Geise G.M., Lee H.-S., Miller D.J., Freeman B.D., McGrath J.E., Paul D.R. Water purification by membranes: The role of polymer science. J. Polym. Sci., Part B: Polym. Phys., 2010, vol. 48, no. 15, pp. 1685–1718. https://doi.org/10.1002/polb.22037.

8. BASF. Ultrason® Specialty polymers for high-performance products. URL: https://plastics-rubber.basf.com/global/en/performance_polymers/products/ultrason/ultrasonproductselector. 10. SYENSQO. Radel® PPSU for Healthcare. URL: https://www.syensqo.com/en/brands/radel-ppsu/healthcare.

9. Raeva A., Matveev D., Anokhina T., Zhansitov A.A., Khashirova S., Volkov V., Borisov I. Increasing the permeability of polyphenylene sulfone hollow fiber ultrafiltration membranes by switching the polymer end groups. Polymers, 2025, vol. 17, no. 1, art. 53. https://doi.org/10.3390/polym17010053.

10. Wojciechowski C., Wasyłeczko M., Lewińska D., Chwojnowski A. A comprehensive review of hollowfiber membrane fabrication methods across biomedical, biotechnological, and environmental domains. Molecules, 2024, vol. 29, no. 11, art. 2637. https://doi.org/10.3390/molecules29112637.

11. Matveev D.N., Raeva A.Yu., Anokhina T.S., Borisov I.L. Creation of ultrafiltration hollow fiber membranes based on polyphenylene sulfone with different chemical structure of end groups. J. Eng. Phys. Thermophys., 2024, vol. 97, no. 6, pp. 1560–1566. https://doi.org/10.1007/s10891-024-03031-9.

12. State Standard 11262–2017. Plastics. Tensile test method. Moscow, Standartinform, 2018. 19 p. (In Russian)

13. Matveev D., Raeva A., Borisov I., Vasilevsky V., Matveeva Y., Zhansitov A., Khashirova S., Volkov V. Effect of molecular weight and chemical structure of terminal groups on the properties of porous hollow fiber polysulfone membranes. Membranes, 2023, vol. 13, no. 4, art. 412. https://doi.org/10.3390/membranes13040412.


Review

For citations:


Raeva A.Yu., Matveev D.N., Anokhina T.S., Zhansitov A.A., Khashirova S.Yu., Volkov V.V., Borisov I.L. Effect of steam sterilization on the morphology and mechanical properties of polyphenylene sulfone hollow fiber membranes. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(4):644-657. (In Russ.) https://doi.org/10.26907/2542-064X.2025.4.644-657

Views: 32

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)