Influence of the elemental composition of few-layer graphene on the strength properties of epoxy resin
https://doi.org/10.26907/2542-064X.2025.4.619-631
Abstract
This article examines the effect of few-layer graphene (FLG) at different compositions on the strength, wear resistance, and thermal conductivity of epoxy resin. The FLG composition was varied using ammonium nitrate and potassium nitrate as synthesis precursors. The incorporation of FLG enhanced the compressive strength and wear resistance of epoxy resin. Increasing the number of heteroatoms in the FLG structure had little influence on the compressive strength of epoxy resin but improved its wear resistance.
About the Authors
N. D. PodlozhnyukРоссия
Nikita D. Podlozhnyuk, Junior Researcher, Laboratory of Physics for Cluster Structures, Department of Solid-State Electronics
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
A. A. Vozniakovskii
Россия
Aleksei A. Vozniakovskii, Cand. Sci. (Chemistry), Senior Researcher, Laboratory of Physics for Cluster Structures, Department of Solid-State Electronics
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
A. P. Voznyakovskii
Россия
Alexandr P. Voznyakovskii, Dr. Sci. (Chemistry), Head of Sector of Nanoheterogeneous Polymer Materials
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
S. V. Kidalov
Россия
Sergey V. Kidalov, Dr. Sci. (Physics and Mathematics), Leading Researcher, Laboratory of Physics for Cluster Structures, Department of Solid-State Electronics
St. Petersburg
Competing Interests:
The authors declare no conflicts of interest
References
1. Jin F.-L., Li X., Park S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem., 2015, vol. 29, pp. 1–11. https://doi.org/10.1016/j.jiec.2015.03.026.
2. Bhong M., Khan T.K.H., Devade K., Krishna B.V., Sura S., Eftikhaar H.K., Thethi H.P., Gupta N. Review of composite materials and applications. Mater. Today: Proc., 2023. https://doi.org/10.1016/j.matpr.2023.10.026.
3. Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, vol. 8, no. 3, pp. 902–907. https://doi.org/10.1021/nl0731872.
4. Lee C., Wei X., Kysar J.W., Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, vol. 321, no. 5887, pp. 385–388. https://doi.org/10.1126/science.1157996.
5. Zhu Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, vol. 22, no. 35, pp. 3906–3924. https://doi.org/10.1002/adma.201001068.
6. Parente J.M., Simões R., Reis P.N.B. Effect of graphene nanoparticles on suspension viscosity and mechanical properties of epoxy-based nanocomposites. Procedia Struct. Integr., 2022, vol. 37, pp. 820–825. https://doi.org/10.1016/j.prostr.2022.02.014.
7. Paraskar P., Bari P., Mishra S. Influence of amine functionalized graphene oxide on mechanical and thermal properties of epoxy matrix composites. Iran. Polym. J., 2020, vol. 29, no. 1, pp. 47–55. https://doi.org/10.1007/s13726-019-00772-w.
8. Meng Q., Feng Y., Han S., Yang F., Demiral M., Meng F., Araby S. Developing functional epoxy/graphene composites using facile in-situ mechanochemical approach. J. Appl. Polym. Sci., 2023, vol. 140, no. 13, art. e53681. https://doi.org/10.1002/app.53681.
9. Osman A., Elhakeem A., Kaytbay S., Ahmed A. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv. Compos. Hybrid Mater., 2022, vol. 5, no. 2, pp. 547–605. https://doi.org/10.1007/s42114-022-00423-4.
10. Szeluga U., Pusz S., Kumanek B., Olszowska K., Kobyliukh A., Trzebicka B. Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Crit. Rev. Solid State Mater. Sci., 2021, vol. 46, no. 2, pp. 152–187. https://doi.org/10.1080/10408436.2019.1708702.
11. Bhatt M.D., Kim H., Kim G. Various defects in graphene: A review. RSC Adv., 2022, vol. 12, no. 33, pp. 21520–21547. https://doi.org/10.1039/D2RA01436J.
12. Voznyakovskii A.P., Vozniakovskii A.A., Kidalov S.V. Few-layer graphene produced by the self-propagating high-temperature process from biopolymers: Synthesis, properties, and application (a review). Russ. J. Inorg. Chem., 2024, vol. 69, no. 3, pp. 334–340. https://doi.org/10.1134/S0036023623603185.
13. Podlozhnyuk N., Vozniakovskii A., Kidalov S., Voznyakovskii A. Performance properties of epoxy resin modified with few-layer graphene obtained by the method of self-propagating high-temperature synthesis. Polymers, 2025, vol. 17, no. 6, art. 812. https://doi.org/10.3390/polym17060812.
14. Voznyakovskii A., Vozniakovskii A., Kidalov S. New way of synthesis of few-layer graphene nanosheets by the self-propagating high-temperature synthesis method from biopolymers. Nanomaterials, 2022, vol. 12, no. 4, art. 657. https://doi.org/10.3390/nano12040657.
15. ISO 178:2019. Plastics – Determination of flexural properties. ISO TC 61/SC 2, 2019. 30 p.
16. ISO 527-2:2025. Plastics – Determination of tensile properties. Part 2: Test conditions for moulding and extrusion plastics. ISO TC 61/SC 2, 2025. 19 p.
17. ISO 604:2002. Plastics – Determination of compressive properties. ISO/TC 61/SC 2, 2002. 24 p.
18. Babrauskas V., Leggett D. Thermal decomposition of ammonium nitrate. Fire Mater., 2020, vol. 44, no. 2, pp. 250–268. https://doi.org/10.1002/fam.2797.
19. Freeman E.S. The kinetics of the thermal decomposition of potassium nitrate and of the reaction between potassium nitrite and oxygen. J. Am. Chem. Soc., 1957, vol. 79, no. 4, pp. 838–842. https://doi.org/10.1021/ja01561a015.
20. Weidenthaler C. Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale, 2011, vol. 3, no. 3, pp. 792–810. https://doi.org/10.1039/C0NR00561D.
21. Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol., 2013, vol. 8, no. 4, pp. 235–246. https://doi.org/10.1038/nnano.2013.46.
22. Díez-Betriu X., Álvarez-García S., Botas C., Álvarez P., Sánchez-Marcos J., Prieto C., Menéndez R., de Andrés A. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C, 2013, vol. 1, no. 41, pp. 6905–6912. https://doi.org/10.1039/C3TC31124D.
23. Vozniakovskii A.A., Vozniakovskii A.P., Kidalov S.V., Otvalko J., Neverovskaia A.Yu. Characteristics and mechanical properties of composites based on nitrile butadiene rubber using graphene nanoplatelets. J. Compos. Mater., 2020, vol. 54, no. 23, pp. 3351–3364. https://doi.org/10.1177/0021998320914366.
24. Podlozhnyuk N.D., Vozniakovskii A.A., Kidalov S.V., Voznyakovskii A.P. Strength properties of epoxy resin modified with few-layer graphene. Tech. Phys., 2025, vol. 70, no. 2, pp. 221–227. https://doi.org/10.61011/TP.2025.02.60817.291-24.
25. Li A., Zhang C., Zhang Y.-F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers, 2017, vol. 9, no. 9, art. 437. https://doi.org/10.3390/polym9090437.
26. Huang X., Zhi C., Lin Y., Bao H., Wu G., Jiang P., Mai Y.-W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng., R, 2020, vol. 142, art. 100577. https://doi.org/10.1016/j.mser.2020.100577.
Review
For citations:
Podlozhnyuk N.D., Vozniakovskii A.A., Voznyakovskii A.P., Kidalov S.V. Influence of the elemental composition of few-layer graphene on the strength properties of epoxy resin. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(4):619-631. (In Russ.) https://doi.org/10.26907/2542-064X.2025.4.619-631
JATS XML


















