The use of amine and polyetheramine hardeners in end sealing compounds for hollow fiber membrane modules
https://doi.org/10.26907/2542-064X.2025.4.590-602
Abstract
The geometry and structure of hollow fiber membranes fabricated from polysulfone by the dry-wet phase inversion method were studied with the help of scanning electron microscopy. Various amine hardeners and difunctional polyetheramines were analyzed as potential components of sealing compounds. The fabricated hollow fiber membranes were sealed in model membrane modules using epoxy sealing compounds with different hardeners. The applicability of these materials was assessed based on the presence of defects when gases were supplied under pressure at the contact point between the membrane and the epoxy. The use of polyetheramine as an amine hardener for the epoxy systems caused no defects at the point of contact between the hollow fiber membranes and the epoxy compound, even when pressures up to 0.5 atm were applied. This ensures high selectivity values for the He/N2 gas pair in the resulting membrane modules.
Keywords
About the Authors
N. P. BezrukovРоссия
Nikolay P. Bezrukov, Junior Researcher, Laboratory of Polymer Composites and Adhesives (No. 27)
Moscow
Competing Interests:
The authors declare no conflicts of interest
V. P. Vasilevsky
Россия
Vladimir P. Vasilevsky, Cand. Sci. (Engineering), Leading Researcher, Laboratory of Polymeric Membranes
Moscow
Competing Interests:
The authors declare no conflicts of interest
D. N. Matveev
Россия
Dmitry N. Matveev, Cand. Sci. (Chemistry), Researcher, Laboratory of Polymeric Membranes
Moscow
Competing Interests:
The authors declare no conflicts of interest
Yu. I. Matveeva
Россия
Yulia I. Matveeva, Junior Researcher, Laboratory of Carbon Dioxide Extraction and Utilization
Moscow
Competing Interests:
The authors declare no conflicts of interest
A. V. Vlasova
Россия
Anna V. Vlasova, Cand. Sci. (Chemistry), Researcher, Laboratory of Polymer Composites and Adhesives (No. 27)
Moscow
Competing Interests:
The authors declare no conflicts of interest
T. S. Anokhina
Россия
Tatyana S. Anokhina, Cand. Sci. (Chemistry), Head of Laboratory of Polymeric Membranes
Moscow
Competing Interests:
The authors declare no conflicts of interest
I. L. Borisov
Россия
Il’ya L. Borisov, Dr. Sci. (Chemistry), Leading Researcher, Laboratory of Polymeric Membranes
Moscow
Competing Interests:
The authors declare no conflicts of interest
S. V. Antonov
Россия
Sergei V. Antonov, Cand. Sci. (Chemistry), Head of Laboratory of Polymer Composites and Adhesives (No. 27)
Moscow
Competing Interests:
The authors declare no conflicts of interest
References
1. Lau H.S., Lau S.K., Soh L.S., Hong S.U., Gok X.Y., Yi S., Yong W.F. State-of-the-art organic-and inorganic-based hollow fiber membranes in liquid and gas applications: Looking back and beyond. Membranes, 2022, vol. 12, no. 5, art. 539. https://doi.org/10.3390/membranes12050539.
2. Lau H.S., Yong W.F. Recent progress and prospects of polymeric hollow fiber membranes for gas application, water vapor separation and particulate matter removal. J. Mater. Chem. A, 2021, vol. 9, no. 47, pp. 26454–26497. https://doi.org/10.1039/D1TA07093B.
3. Skog T.G., Johansen S., Hägg M.-B. Method to prepare lab-sized hollow fiber modules for gas separation testing. Ind. Eng. Chem. Res., 2014, vol. 53, no. 23, pp. 9841–9848. https://doi.org/10.1021/ie4041059.
4. Mandrik M.A., Sadkovskii I.A., Antonov S.V. Method for manufacturing a hollow fiber module. Patent RF no. 2706302. Byull. FIPS, 2015, no. 32. (In Russian)
5. Anzai T., Kido T. Artificial lung and method for manufacturing artificial lung. Patent US 10758658. 2020.
6. Iyer G., Doh C. Blended potting resins and use thereof. Patent US 10981117. 2021.
7. Khakimullin Y.N., Kurkin A.I., Valeev R.R., Petlin I.A. New alternative to liquid thiokol in commercial sealants. Polym. Sci., Ser. D, 2017, vol. 10, no. 1, pp. 1–3. https://doi.org/10.1134/S1995421217010130.
8. Bezrukov N.P., Antonov S.V., Smirnova N.M., Vlasova A.V., Melekhina V.Y., Makarova V.V., Tarasov V.N., Ermakov I.O. Adhesive compositions based on epoxy anhydride systems modified with poly alkenyl succinic anhydrides. Polym. Sci., Ser. D, 2025, vol. 18, no. 1, pp. 6–15. https://doi.org/10.1134/S1995421224701715.
9. Bezrukov N.P., Smirnova N.M., Vlasova A.V., Melekhina V.Y., Makarova V.V., Antonov S.V. Application of polymers containing tertiary amino groups as curing accelerators and modifiers of epoxy-anhydride systems. Polym. Eng. Sci., 2025, vol. 65, no. 5, pp. 2370–2380. https://doi.org/10.1002/pen.27155.
10. Lv J., Zhu C., Qiu H., Zhang J., Gu C., Feng J. Robust icephobic epoxy coating using maleic anhydride as a crosslinking agent. Progr. Org. Coat., 2020, vol. 142, art. 105561. https://doi.org/10.1016/j.porgcoat.2020.105561.
11. Kychkin A., Anan’eva E., Kychkin A., Тuisov A. Research of influence carbon nano tubes on elastic-strength properties of epoxy resin. Procedia Struct. Integr., 2020, vol. 30, pp. 59–63. https://doi.org/10.1016/j.prostr.2020.12.036.
12. Fedoseev M.S., Derzhavinskaya L.F., Tsvetkov R.V., Lysenko S.N., Oshchepkova T.E., Borisova I.A. Enhancement of the heat resistance of polymers and composites by curing of epoxy resins with methylendic anhydride under the action of imidazoles. Russ. J. Appl. Chem., 2019, vol. 92, no. 9, pp. 1190–1199. https://doi.org/10.1134/S1070427219090027.
13. Petrova A.P., Isaev A.Y., Smirnov O.I., Emel’yanov A.S. Main components composing domestic epoxy glues (review). Part I. Polym. Sci., Ser. D, 2023, vol. 16, no. 4, pp. 799–809. https://doi.org/10.1134/S1995421223040251.
14. Chen S., Xu Y., Wang Z. Thermal analysis of epoxy resin matrix and carbon fiber epoxy laminate cured by imidazole. J. Therm. Anal. Calorim., 2022, vol. 147, no. 23, pp. 13611–13623. https://doi.org/10.1007/s10973-022-11584-1.
15. Atyasova E.V., Samoilenko V.V., Blaznov A.N., Firsov V.V., Sakoshev Z.G. Optimizing an EDI epoxy binder using the Pareto method. Polym. Sci., Ser. D, 2022, vol. 15, no. 3, pp. 394–399. https://doi.org/10.1134/S1995421222030066.
16. Li J., Aung H.H., Du B. Curing regime-modulating insulation performance of anhydride-cured epoxy resin: A review. Molecules, 2023, vol. 28, no. 2, art. 547. https://doi.org/10.3390/molecules28020547.
17. Wang Z., Gnanasekar P., Nair S.S., Yi S., Yan N. Curing behavior and thermomechanical performance of bioepoxy resin synthesized from vanillyl alcohol: Effects of the curing agent. Polymers, 2021, vol. 13, no. 17, art. 2891. https://doi.org/10.3390/polym13172891.
18. Osipova V.A., Gorbunova T.I., Barabanov M.A., Mekhaev A.V., Vichuzhanin D.I., Smirnov S.V., Pestov A.V. New epoxy resin polymerization catalysts based on N,N-dimethylaminoalkylamides of perfluoroalkanoic acids. Russ. J. Appl. Chem., 2022, vol. 95, no. 1, pp. 53–58. https://doi.org/10.1134/S1070427222010074.
19. Ignatenko V.Y., Kostyuk A.V., Kostina J.V., Bakhtin D.S., Makarova V.V., Antonov S.V., Ilyin S.O. Heavy crude oil asphaltenes as a nanofiller for epoxy resin. Polym. Eng. Sci., 2020, vol. 60, no. 7, pp. 1530–1545. https://doi.org/10.1002/pen.25399.
20. Li L., Cai Z. Flame-retardant performance of transparent and tensile-strength-enhanced epoxy resins. Polymers, 2020, vol. 12, no. 2, art. 317. https://doi.org/10.3390/polym12020317.
21. Tkachuk A.I., Zagora A.G., Terekhov I.V., Mukhametov R.R. Isophorone diamine – a curing agent for epoxy resins: Production, application, prospects. A review. Polym. Sci., Ser. D, 2020, vol. 15, no. 2, pp. 171–176. https://doi.org/10.1134/S1995421222020289.
22. Mochalova E.N., Galikhanov M.F., Mikryukova Y.K. Electret and strength properties of polymeric materials based on epoxy oligomer and amine curing agents. Russ. J. Appl. Chem., 2019, vol. 92, no. 11, pp. 1492–1498. https://doi.org/10.1134/S1070427219110041.
23. Zhang J., Zhang Z., Huang R., Tan L. Advances in toughening modification methods for epoxy resins: A comprehensive review. Polymers, 2025, vol. 17, no. 9, art. 1288. https://doi.org/10.3390/polym17091288.
24. Matveev D., Anokhina T., Raeva A., Borisov I., Grushevenko E., Khashirova S., Volkov A., Bazhenov S., Volkov V., Maksimov A. High-performance porous supports based on hydroxyl-terminated polysulfone and CO2/CO-selective composite membranes. Polymers, 2024, vol. 16, no. 24, art. 3453. https://doi.org/10.3390/polym16243453.
25. Matveev D.N., Kutuzov K.A., Vasilevsky V.P. Effect of draw ratio on the morphology of polysulfone hollow fiber membranes. Membr. Membr. Technol., 2020, vol. 2, no. 6, pp. 351–356. https://doi.org/10.1134/S2517751620060074.
26. Aitken C.L., Koros W.J., Paul D.R. Effect of structural symmetry on gas transport properties of polysulfones. Macromolecules, 1992, vol. 25, no. 13, pp. 3424–3434. https://doi:10.1021/ma00039a018.
Review
For citations:
Bezrukov N.P., Vasilevsky V.P., Matveev D.N., Matveeva Yu.I., Vlasova A.V., Anokhina T.S., Borisov I.L., Antonov S.V. The use of amine and polyetheramine hardeners in end sealing compounds for hollow fiber membrane modules. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(4):590-602. (In Russ.) https://doi.org/10.26907/2542-064X.2025.4.590-602
JATS XML


















