Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Field evaluation of the potential for CO2 emission prediction using humus parameters of fallow soils under tillage

https://doi.org/10.26907/2542-064X.2025.3.499-516

Abstract

A model field experiment was carried out over two consecutive growing seasons (2022 and 2023) in the tilled areas with low, medium, and high levels of soil organic matter (SOM) (experimental sites) and adjacent fallows (control sites) to evaluate the potential for predicting CO2 emissions from humus parameters of the old-arable horizon of fallow light gray forest soil. The CO2 emissions from the experimental sites exceeded those from the fallows by 3.2–3.4 times in the first year and by 2.6–3.3 times in the second year. The mean differences in CO2 emissions between the experimental and control sites were 0.175, 0.214, and 0.225 g С-СО /(m2×h) in case of low, medium, and high SOM levels, respectively. The content of Na4P2O7 –NaOH-soluble carbon (Calk) decreased significantly at the sites with medium and high SOM levels, while the decline in total carbon (Ctot) was not significant, and boiling-water-soluble carbon (Cbw) increased. Among the studied parameters, Calk showed the greatest potential as an indicator of humus state in fallow soils for predictive modeling of CO2 emissions during land use change.

About the Authors

K. G. Giniyatullin
Kazan Federal University
Russian Federation

Kamil G. Giniyatullin - Cand. Sci. (Biology), Associate Professor, Department of Soil Science, Institute of Ecology, Biotechnology, and Nature Management.

Kazan


Competing Interests:

The authors declare no conflicts of interest



I. A. Sahabiev
Kazan Federal University
Russian Federation

Ilnas A. Sahabiev - Cand. Sci. (Biology), Associate Professor, Department of Soil Science, Institute of Ecology, Biotechnology, and Nature Management.

Kazan


Competing Interests:

The authors declare no conflicts of interest



E. V. Smirnova
Kazan Federal University
Russian Federation

Elena V. Smirnova - Cand. Sci. (Biology), Associate Professor, Head of Department of Soil Science, Institute of Ecology, Biotechnology, and Nature Management.

Kazan


Competing Interests:

The authors declare no conflicts of interest



D. V. Tishin
Kazan Federal University
Russian Federation

Denis V. Tishin - Cand. Sci. (Biology), Associate Professor, Department of General Ecology, Institute of Ecology, Biotechnology, and Nature Management.

Kazan


Competing Interests:

The authors declare no conflicts of interest



T. A. Makarova
Kazan Federal University
Russian Federation

Tatyana A. Makarova - Postgraduate Student, Department of Soil Science, Institute of Ecology, Biotechnology, and Nature Management.

Kazan


Competing Interests:

The authors declare no conflicts of interest



References

1. Li S., Li X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci., 2017, vol. 27, no. 1, pp. 1123–1150. https://doi.org/10.1007/s11442-017-1426-0.

2. Ustaoglu E., Collier M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev., 2018, vol. 26, no. 4, pp. 396–416. https://doi.org/10.1139/er-2018-0001.

3. Lyuri D.I., Goryachkin S.V., Karavaeva N.A., Denisenko E.A., Nefedova T.G. Dinamika sel’skokhozyaistvennykh zemel’ Rossii v ХХ v. i postagrogennoe vosstanovlenie rastitel’nosti i pochv [Dynamics of Agricultural Lands in Russia in the 20th century and Post-Agrogenic Restoration of Vegetation and Soils]. Moscow, Geos, 2010. 416 p. (In Russian)

4. Ivanov A.L., Zavalin A.A., Kuznetsov M.S., Zakharenko V.A., Svintsov I.P., Karpukhin A.I., Isaev V.A., Gulyuk G.G., Chekmarev P.A., Efanov P.A., Kiryushin V.I., Khitrov N.B., Kashtanov A.N., Aparin B.F., Karmanov I.I., Bulgakov D.S., Molchanov E.N., Rozhkov V.A., Simakova M.S., Rukhovich D.I., Lyubimova I.N., Nazarova L.F., Aleksakhin R.M., Sanzharova N.I., Shubina O.A., Prudnikov P.V., Novikov A.A., Titov I.E., Kizyaev B.M., Kireicheva L.V., Kovalev N.G., Sychev V.G., Lunev M.I., Pavlikhina A.V., Es’kov A.I., Tarasov S.I., Cherkasov G.N., Masyutenko N.P., Kulik K.N., Sizov O.A., Kosolapov V.M., Kutuzova A.N., Dobrovol’skii G.V., Shoba S.A., Urusevskaya I.S., Alyabina I.O., Karpova D.V., Lyuri D.I., Goryachkin S.V., Karavaeva N.A., Denisenko E.A., Volkov S.N., Vershinin V.V., Varlamov A.A., Loiko P.F., Mindrin A.S., Sapozhnikov P.N., Ogleznev A.K., Sorokina O.A., Fedorenko V.F. Agroekologicheskoe sostoyanie i perspektivy ispol’zovaniya zemel’, vybyvshikh iz aktivnogo sel’skokhozyaistvennogo proizvodstva [Agroecological State and Prospects for the Use of Lands Abandoned for Active Agricultural Production]. Romanenko G.A. (Ed.). Moscow, FGNU “Rosinformagrotekh”, 2008. 64 p. (In Russian)

5. Kurganova I.N., Lopes De Gerenyu V.O., Shvidenko A.Z., Sapozhnikov P.M. Changes in the organic carbon pool of abandoned soils in Russia (1990–2004). Eurasian Soil Sci., 2010, vol. 43, no. 3, pp. 333–340. https://doi.org/10.1134/S1064229310030129.

6. Kurganova I., Lopes de Gerenyu V., Kuzyakov Y. Largescale carbon sequestration in postagrogenic ecosystems in Russia and Kazakhstan. Catena, 2015, vol. 133, pp. 461–466. https://doi.org/10.1016/j.catena.2015.06.002.

7. Kudeyarov V.N. Soil-biogeochemical aspects of arable farming in the Russian Federation. Eurasian Soil Sci., 2019, vol. 52, no. 1, pp. 94–104. https://doi.org/10.1134/S1064229319010095.

8. Nekrich A.S., Lyuri D.I. Changes in the dynamics of agricultural lands in Russia in 1990–2014. Izv. Ross. Akad. Nauk. Ser. Geogr., 2019, no. 3, pp. 64–77. https://doi.org/10.31857/S2587-55662019364-77. (In Russian)

9. Resolution of the Government of the Russian Federation of May 14, 2021 no. 731 “On the State Program for the Effective Involvement of Agricultural Lands into Circulation and the Development of the Land Reclamation Complex of the Russian Federation”. URL: http://base.garant.ru/400773886/. (In Russian)

10. Alcantara C., Kuemmerle T., Baumann M., Bragina E.V., Griffiths P., Hostert P., Knorn J., Müller D., Prishchepov A.V., Schierhorn F. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett., 2013, vol. 8, no. 3, art. 035035. https://doi.org/10.1088/1748-9326/8/3/035035.

11. Guo L.B., Gifford R.M. Soil carbon stock and land use change: A meta analysis. Global Change Biol., 2002, vol. 8, no. 4, pp. 345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x.

12. Mueller C.W., Koegel-Knabner I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils, 2009, vol. 45, no. 4, pp. 347–359. https://doi.org/10.1007/s00374-008-0336-9.

13. Kalinina O., Chertov O., Dolgikh A.V., Goryachkin S.V., Lyuri D.I., Vormstein S., Giani L. Selfrestoration of post-agrogenic Albeluvisols: Soil development, carbon stocks and dynamics of carbon pools. Geoderma, 2013, vols. 207–208, pp. 221–233. https://doi.org/10.1016/j.geoderma.2013.05.019.

14. Giniyatullin K.G., Ryazanov S.S., Smirnova E.V., Latypova L.I., Ryzhikh L.Yu. Using geostatistical methods for evaluating organic matter reserves in fallow soils. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 275–292. https://doi.org/10.26907/2542-064X.2019.2.275-292. (In Russian)

15. Kurganova I.N., Telesnina V.M., Lopes de Gerenyu V.O., Lichko V.I., Karavanova E.I. The dynamics of carbon pools and biological activity of retic albic podzols in southern taiga during the postagrogenic evolution. Eurasian Soil Sci., 2021, vol. 54, no. 3, pp. 337–351. https://doi.org/10.1134/S1064229321030108.

16. Semenov B.M., Kravchenko I.K., Ivannikova L.A., Kuznetsova T.V., Semenova N.A., Gispert M., Pardini J. Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems. Eurasion Soil Sci., 2006, vol. 39, no. 3, pp. 251–260. https://doi.org/10.1134/S1064229306030033.

17. Erokhova A.A., Makarov M.I., Morgun E.G., Ryzhova I.M. Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils. Eurasian Soil Sci., 2014, vol. 47, no. 11, pp. 1100–1106. https://doi.org/10.1134/S1064229314110040.

18. Giniyatullin K.G., Smirnova E.V., Ryzhikh L.Yu., Latipova L.I. Spectral characteristics of watersoluble and alkaline-soluble organic substance of fallow light-gray forest soils. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 315, no. 5, art. 052021. https://doi.org/10.1088/1755-1315/315/5/052021.

19. Kudeyarov V.N. Current state of the carbon budget and the capacity of Russian soils for carbon sequestration. Eurasian Soil Sci., 2015, vol. 48, no. 9, pp. 923–933. https://doi.org/10.1134/S1064229315090070.

20. Ginijatullin K.G., Sakhabiev I.A., Okunev R.V., Kadyrova R.G., Ryzhikh L.Yu. Study in a long-term laboratory experiment of the potential susceptibility to mineralization of organic matter in post-agrogenic light gray soils. Agrar. Sci., 2024, no. 1, pp. 97–101. https://doi.org/10.32634/0869-8155-2024-378-1-97-101. (In Russian)

21. Ioffe G., Nefedova T., Kirsten D.B. Land abandonment in Russia. Eurasian Geogr. Econ., 2012, vol. 53, no. 4, pp. 527–549. https://doi.org/10.2747/1539-7216.53.4.527.

22. Potapov P.V., Turubanova S.A., Tyukavina A., Krylov A.M., McCarty J.L., Radeloff V.C., Hansen M.C. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ., 2015, vol. 159, pp. 28–43. https://doi.org/10.1016/j.rse.2014.11.027.

23. Goga T., Feranec J,. Bucha T., Rusnák M., Sačkov I,. Barka I., Kopecká M., Papčo J., Ot’ahel’ J., Szatmári D., Pazúr R., Sedliak M., Pajtík J., Vladovič J. A review of the application of remote sensing data for abandoned agricultural land identification with focus on Central and Eastern Europe. Remote Sens., 2019, vol. 11, no. 23, art. 2759. https://doi.org/10.3390/rs11232759.

24. Ershov D.V., Gavrilyuk E.A., Koroleva N.V., Belova E.I., Tikhonova E.V., Shopina O.V., Titovets A.V., Tikhonov G.N. Natural afforestation on abandoned agricultural lands during post-Soviet period: A comparative Landsat data analysis of bordering regions in Russia and Belarus. Remote Sens., 2022, vol. 14, no. 2, art. 322. https://doi.org/10.3390/rs14020322.

25. Giniyatullin K.G., Sahabiev I.A., Ryazanov S.S., Smirnova E.V., Tishin D.V., Latypova K.I. Possibility of using zoning of fallow vegetation by vegetation indices to assess organic matter accumulation in postagrogenic soils. Eurasian Soil Sci., 2023, vol. 56, no. 8, pp. 1130–1138. https://doi.org/10.1134/S1064229323600951.

26. Lesiv M., Schepaschenko D., Moltchanova E., Bun R., Dürauer M., Prishchepov A.V., Schierhorn F., Estel S., Kuemmerle T., Alcántara C., Kussul N., Shchepashchenko M., Kutovaya O., Martynenko O., Karminov V., Shvidenko A., Havlik P., Kraxner F., See L., Fritz S. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. Data, 2018, vol. 5, art. 180056. https://doi.org/10.1038/sdata.2018.56.

27. Kurganova I.N., Yermolaev A.M., Lopes de Gerenyu V.O., Larionova A.A., Kuzyakov Ya., Keller T., Lange S. Carbon balance in the soils of abandoned lands in Moscow region. Eurasian Soil Sci., 2007, vol. 40, no. 1, pp. 51–58. https://doi.org/10.1134/S1064229307010085.

28. Kogut B.M., Semenov V.M., Artem’eva Z.S., Danchenko N.N. Humus depletion and soil carbon sequestration. Agrokhimiya, 2021, no. 5, pp. 3–13. https://doi.org/10.31857/S0002188121050070. (In Russian)

29. Kudeyarov V.N. Soil respiration and carbon sequestration: A review. Eurasion Soil Sci., 2023, vol. 56. no. 9, pp. 1191–1200. https://doi.org/10.1134/S1064229323990012.

30. State Standard 26213-91. Soils. Methods for determination of organic matter. Moscow, Izd. Stand., 1992. 7 p. (In Russian)

31. Schultz E., Denner B., Hoffman G. Method for determination of carbon and nitrogen extractable by hot water. In: Metody issledovaniya organicheskogo veshchestva pochv [Methods of Studying Soil Organic Matter]. Moscow, Rossel’khozakademiya – GNU BNIPTIOU, 2005, pp. 230–240. (In Russian)

32. Kononova M.M., Bel’chikova N.P. Accelerated methods for determining the composition of humus in mineral soils. Pochvovedenie, 1961, no. 10, pp. 75–87. (In Russian)

33. Lomander A., Kätterer T., Andrén O. Carbon dioxide evolution from topand subsoil as affected by moisture and constant and fluctuation temperature. Soil Biol. Biochem., 1998, vol. 30, no. 14, pp. 2017–2022. https://doi.org/10.1016/S0038-0717(98)00076-5.

34. Kurganova I., Lopes De Gerenyu V., Khoroshaev D., Myakshina T., Sapronov D., Zhmurin V. Temperature sensitivity of soil respiration in two temperate forest ecosystems: The synthesis of a 24-year continuous observation. Forests, 2022, vol. 13, no. 9, art. 1374. https://doi.org/10.3390/f13091374.

35. Kurganova I.N., Lopes De Gerenyu V.O., Myakshina T.N., Sapronov D.V., Khoroshaev D.A., Ableeva V.A. Temperature sensitivity of soil respiration in grasslands in temperate continental climate zone: Analysis of 25-year-long monitoring data. Eurasian Soil Sci., 2023, vol. 56, no. 9, pp. 1232–1246. https://doi.org/10.1134/S1064229323601130.

36. Kurganova I.N. Emission and balance of carbon dioxide in terrestrial ecosystems of Russia. Extended Abstract of Dr. Sci. (Biology) Diss. Moscow, 2010. 48 p. (In Russian)

37. Ananyeva N.D., Susyan E.A., Ryzhova I.M., Bocharnikova E.O., Stolnikova E.V. Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast). Eurasian Soil Sci., 2009, vol. 42, no. 9, pp. 1029–1037. https://doi.org/10.1134/S1064229309090105.

38. Polyanskaya L.M., Sukhanova N.I., Chakmazyan K.V., Zvyagintsev D.G. Changes in the structure of soil microbial biomass under fallow. Eurasian Soil Sci., 2012, vol. 45, no. 7, pp. 710–716. https://doi.org/10.1134/S1064229312030088.

39. Karelin D.V., Goryachkin S.V., Kudikov A.V., Lopes de Gerenu V.O., Lunin V.N., Dolgikh A.V., Lyuri D.I. Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia. Eurasian Soil Sci., 2017, vol. 50, no. 5, pp. 559–572. https://doi.org/10.1134/S1064229317050076.

40. Rosnovskii I.N. Sistemnyi analiz i matematicheskoe modelirovanie protsessov v pochvakh [Systems Analysis and Mathematical Modeling of Processes in Soils]. Tomsk, Tomsk. Gos. Univ., 2007. 312 p. (In Russian)

41. Shein E.V., Ryzhova I.M. Matematicheskoe modelirovanie v pochvovedenii [Mathematical Modeling in Soil Science]. Moscow, IP Marakushev A.B., 2016. 377 p. (In Russian)


Review

For citations:


Giniyatullin K.G., Sahabiev I.A., Smirnova E.V., Tishin D.V., Makarova T.A. Field evaluation of the potential for CO2 emission prediction using humus parameters of fallow soils under tillage. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(3):499-516. (In Russ.) https://doi.org/10.26907/2542-064X.2025.3.499-516

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)