Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Comprehensive assessment of morphophysiological characteristics in Нelianthus annuus L. seedlings under combined stress

https://doi.org/10.26907/2542-064X.2025.3.458-481

Abstract

Pollution with heavy metals has become a major concern in food security. Their accumulation levels in different plants are strongly influenced by weather conditions. In this study, several series of experiments were carried out to assess the individual and combined effects of two stress factors (moisture deficit and heavy metal pollution) on morphometric parameters, physiology, and antioxidant status of sunflower plants. Drought stress significantly reduced shoot length, promoted root elongation, and caused alterations in cotyledon shape. The highest concentrations of malondialdehyde (MDA), a known marker of oxidative stress, were found in the plants under drought alone and in combination with heavy metal stress. Individual stresses led to a suppression of the low-molecular-weight antioxidant system in the plants, while combined stresses activated it as a primary defense mechanism, coinciding with the decreased contents of photosynthetic pigments. Aridification (drought) intensified cadmium accumulation in the plants without any visible changes in the morphology of their aboveground biomass, but with the stimulation of root system growth through an increase in the number of lateral roots. Among the tested heavy metals, lead was the most toxic when applied individually, resulting in a linear decrease in the contents of photosynthetic pigments as its concentration in the substrate increased.

About the Authors

D. G. Fedorova
Orenburg State University
Russian Federation

Daria G. Fedorova - Cand. Sci. (Biology), Director of Botanical Garden, Senior Researcher of Scientific and Educational Center “Biological Systems and Nanotechnology”.

Orenburg


Competing Interests:

The authors declare no conflicts of interest



N. M. Nazarova
Orenburg State University
Russian Federation

Natalia M. Nazarova - Cand. Sci. (Biology), Head of Research Group of Botanical Garden, Senior Researcher of Scientific and Educational Center “Biological Systems and Nanotechnology”.

Orenburg


Competing Interests:

The authors declare no conflicts of interest



A. M. Gvozdikova
Federal Research Center of Biological Systems and Agrotechnologies of Russian Academy of Sciences
Russian Federation

Anastasia M. Gvozdikova - Cand. Sci. (Biology), Senior Researcher, Laboratory of Biological Testing and Expertise.

Orenburg


Competing Interests:

The authors declare no conflicts of interest



B. S. Ukenov
Orenburg State University
Russian Federation

Bulat S. Ukenov - Cand. Sci. (Biology), Associate Professor of Department of Biology and Soil Science, Senior Researcher of Botanical Garden.

Orenburg


Competing Interests:

The authors declare no conflicts of interest



References

1. Chen Y.-G., He X.-L.-S., Huang J.-H., Luo R., Ge H.-Z., Wołowicz A., Wawrzkiewicz M., GładyszPłaska A., Li B., Yu Q.-X., Kołodyńska D., Lv G.-Y., Chen S.-H. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol. Environ. Saf., 2021, vol. 219, art. 112336. https://doi.org/10.1016/j.ecoenv.2021.112336.

2. Khalid M.F., Khan R.I., Jawaid M.Z., Shafqat W., Hussain S., Ahmed T., Rizwan M., Ercisli S., Pop O.L., Marc R.A. Nanoparticles: The plant saviour under abiotic stresses. Nanomaterials, 2022, vol. 12, no. 21, art. 3915. https://doi.org/10.3390/nano12213915.

3. Nguyen T.Q., Sesin V., Kisiala A., Emery R.J.N. Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ. Toxicol. Chem., 2021, vol. 40, no. 1, pp. 7–22. https://doi.org/10.1002/etc.4909.

4. Hailegnaw N.S., Mercl F., Pračke K., Praus L., Száková J., Tlustoš P. The role of biochar and soil properties in determining the available content of Al, Cu, Zn, Mn, and Cd in soil. Agronomy, 2020, vol. 10, no. 6, art. 885. https://doi.org/10.3390/agronomy10060885.

5. Akbar W.A., Rahim H.U., Irfan M., Sehrish A.K., Mudassir M. Assessment of heavy metal distribution and bioaccumulation in soil and plants near coal mining areas: Implications for environmental pollution and health risks. Environ. Monit. Assess., 2024, vol. 196, no. 1, art. 97. https://doi.org/10.1007/s10661-023-12258-7.

6. Iqbal Z., Imran M., Natasha, Rahman G., Miandad M., Shahid M., Murtaza B. Spatial distribution, health risk assessment, and public perception of groundwater in Bahawalnagar, Punjab, Pakistan: A multivariate analysis. Environ. Geochem. Health, 2023, vol. 45, no. 2, pp. 381–391. https://doi.org/10.1007/s10653-021-01182-9.

7. Pasricha S., Mathur V., Garg A., Lenka S., Verma K., Agarwal S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ. Challenges, 2021, vol. 4, art. 100197. https://doi.org/10.1016/j.envc.2021.100197.

8. Riyazuddin R., Nisha N., Ejaz B., Khan M.I.R., Kumar M., Ramteke P.M., Gupta R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules, 2022, vol. 12, no. 1, art. 43. https://doi.org/10.3390/biom12010043.

9. Thakur M., Praveen S., Divte P.R., Mitra R., Kumar M., Gupta C.K., Kalidindi U., Bansal R., Roy S., Anand A., Singh B. Metal tolerance in plants: Molecular and physicochemical interface determines the “not so heavy effect” of heavy metals. Chemosphere, 2022, vol. 287, pt. 1, art. 131957. https://doi.org/10.1016/j.chemosphere.2021.131957.

10. Kama R., Liu Y., Zhao S., Hamani A.K.M., Song J., Cui B., Aidara M., Liu C., Li Z. Combination of intercropping maize and soybean with root exudate additions reduces metal mobility in soilplant system under wastewater irrigation. Ecotoxicol. Environ. Saf., 2023, vol. 266, art. 115549. https://doi.org/10.1016/j.ecoenv.2023.115549.

11. Haider F.U., Liqun C., Coulter J.A., Cheema S.A., Wu. J., Zhang R., Wenjun M., Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf., 2021, vol. 211, art. 111887. https://doi.org/10.1016/j.ecoenv.2020.111887.

12. Ismael M.A., Elyamine A.M., Moussa M.G., Cai M., Zhao X., Hu C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 2019, vol. 11, no. 2, pp. 255–277. https://doi.org/10.1039/c8mt00247a.

13. Karalija E., Selović A., Bešta-Gajević R., Šamec D. Thinking for the future: Phytoextraction of cadmium using primed plants for sustainable soil clean-up. Physiol. Plant., 2022, vol. 174, no. 4, art. e13739. https://doi.org/10.1111/ppl.13739.

14. Keshavarzi A., Kumar V. Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geol., Ecol., Landscapes, 2019, vol. 4, no. 2, pp. 87–103. https://doi.org/10.1080/24749508.2019.1587588.

15. Fasani E., Giannelli G., Varotto S., Visioli G., Bellin D., Furini A., DalCorso G. Epigenetic control of plant response to heavy metals. Plants, 2023, vol. 12, no. 18, art. 3195. https://doi.org/10.3390/plants12183195.

16. Hu Z., Zhao C., Li Q, Feng Y., Zhang X., Lu Y., Ying R., Yin A., Ji W. Heavy metals can affect plant morphology and limit plant growth and photosynthesis processes. Agronomy, 2023, vol. 13, no. 10, art. 2601. https://doi.org/10.3390/agronomy13102601.

17. Makuch-Pietraś I., Grabek-Lejko D., Górka A., Kasprzyk I. Antioxidant activities in relation to the transport of heavy metals from the soil to different parts of Betula pendula (Roth.). J. Biol. Eng., 2023, vol. 17, no. 1, art. 19. https://doi.org/10.1186/s13036-022-00322-8.

18. Liu C., Guo B., Li H., Fu Q., Li N., Lin Y., Xu G. Azolla incorporation under flooding reduces grain cadmium accumulation by decreasing soil redox potential. Sci. Rep., 2021, vol. 11, art. 6325. https://doi.org/10.1038/s41598-021-85648-x.

19. Fan P., Wu L., Wang Q., Wang Y., Luo H., Song J., Yang M., Yao H., Chen S. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. J. Hazard. Mater., 2023, vol. 450, art. 131008. https://doi.org/10.1016/j.jhazmat.2023.131008.

20. Goncharuk E.A., Zagoskina N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium: Review. Molecules, 2023, vol. 28, no. 9, art. 3921. https://doi.org/10.3390/molecules28093921.

21. Guo Z., Gao Y., Yuan X., Yuan M., Huang L., Wang S., Liu C., Duan C. Effects of heavy metals on stomata in plants: A review. Int. J. Mol. Sci., 2023, vol. 24, no. 11, art. 9302. https://doi.org/10.3390/ijms24119302.

22. Hlihor R.M., Roșca M., Hagiu-Zaleschi L., Simion I.M., Daraban G.M., Stoleru V. Medicinal plant growth in heavy metals contaminated soils: Responses to metal stress and induced risks to human health. Toxics, 2022, vol. 10, no. 9, art. 499. https://doi.org/10.3390/toxics10090499.

23. Mansoor S., Ali A., Kour N., Bornhorst J., AlHarbi K., Rinklebe J., Abd El Moneim D., Ahmad P., Chung Y.S. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants, 2023, vol. 12, no. 16, art. 3003. https://doi.org/10.3390/plants12163003.

24. Abbas T., Rizwan M., Ali S., Adrees M., Mahmood A., Zia-Ur-Rehman M., Ibrahim M., Arshad M., Qayyum M.F. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf., 2018, vol. 148, pp. 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063.

25. Adrees M., Khan Z.S., Ali S., Hafeez M., Khalid S., Zia Ur Rehman M., Hussain A., Hussain K., Chatha S.A.S., Rizwan M. Simultaneous mitigation of cadmium and drought stress in wheat by soil application of iron nanopartiсles. Chemosphere, 2020, vol. 238, art. 124681. https://doi.org/10.1016/j.chemosphere.2019.124681.

26. Nazarova N., Fedorova D., Gvozdikova A. Determination of the mechanisms of resistance of Helianthus annuus L. to drought using the osmopriming method. E3S Web of Conf., 2024, vol. 539, art. 01044. https://doi.org/10.1051/e3sconf/202453901044.

27. Ahmed T., Noman M., Manzoor N., Shahid M., Abdullah M., Ali L., Wang G., Hashem A., Al-Arjani A.-B.F., Alqarawi A.A., Abd-Allah E.F., Li B. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol. Environ. Saf., 2021, vol. 209, art. 111829. https://doi.org/10.1016/j.ecoenv.2020.111829.

28. Benavides B.J., Drohan P.J., Spargo J.T., Maximova S.N., Guiltinan M.J., Miller D.A. Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus cv Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver). Chemosphere, 2021, vol. 265, art. 129086. https://doi.org/10.1016/j.chemosphere.2020.129086.

29. Akhter N., Habiba O., Hina M., Muhammad M.S., Alzuaibr F.M., Alamri S., Hashem M., Khalid N., Aqeel M., Noman A. Structural, biochemical, and physiological adjustments for toxicity management, accumulation, and remediation of cadmium in wetland ecosystems by Typha domingensis Pers. Water, Air, Soil Pollut., 2022, vol. 233, no. 5, art. 151. https://doi.org/10.1007/s11270-022-05613-w.

30. Fu Y., Zhatova H., Li Y., Liu Q., Trotsenko V., Li C. Physiological and transcriptomic comparison of two sunflower (Helianthus annuus L.) cultivars with high/low cadmium accumulation. Front. Plant Sci., 2022, vol. 13, art. 854386. https://doi.org/10.3389/fpls.2022.854386.

31. Praktikum po fiziologii rastenii [Practical Course in Plant Physiology]. Tret’yakov N.N. (Ed.). Moscow, KolosS, 2003. 288 p. (In Russian)

32. Shlyk A.A. On spectrophotometric determination of chlorophyll a and b. Biokhimiya, 1968, vol. 3, no. 2, pp. 275–285. (In Russian)

33. Chance B., Maehly A.C. Assay of catalases and peroxidases. Methods Enzymol., 1955, vol. 2, pp. 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8.

34. Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 1968, vol. 125, no. 1, pp. 189–198. https://doi.org/10.1016/0003-9861(68)90654-1.

35. Popova O.S., Skrypnik L.N. Comparative description of the efficiency of various methods for extracting polyphenols from plants of the family Lamiaceae. Usp. Sovrem. Estestvozn., 2017, no. 6, pp. 34–38. (In Russian)

36. Karimov D.R., Makarov V.V., Kruchin S.O., Berezin D.B., Smirnova N.L., Berezin M.B., Zheltova E.I., Strel’nikov A.I., Kustov A.V. Optimization of the conditions for chlorophyll extraction from common nettle (Urtica dioica L.) and spirulina (Spirulina platensis). Khim. Rastit. Syr’ya, 2014, no. 4, pp. 189–196. https://doi.org/10.14258/jcprm.201404310. (In Russian)

37. Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, vol. 16, no. 3, pp. 144–158. https://doi.org/10.5344/ajev.1965.16.3.144.

38. Seregin I.V. Distribution of heavy metals in plants and their effects on growth. Dr. Sci. (Biology) Diss. Moscow, 2009. 333 p. (In Russian)

39. Munzuroglu O., Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol., 2002. vol. 43, no. 2, pp. 203–213. https://doi.org/10.1007/s00244-002-1116-4.

40. Tyutereva E.V., Dmitrieva V.A., Voitsekhovskaya O.V. Chlorophyll b as a source of signals steering plant development. S-kh. Biol., 2017, vol. 52, no. 5, pp. 843–855. https://doi.org/10.15389/agrobiology.2017.5.843rus. (In Russian)

41. Tukendorf A., Baszyński T. The in vivo effect of cadmium on photochemical activities in chloroplasts of runner bean plants. Acta Physiol. Plant., 1991, vol. 13, no. 1, pp. 51–57.

42. Zaripova N.R. Effect of excess concentrations of heavy metals on the expression of chloroplast genes in barley plants. Cand. Sci. (Biology) Diss. Moscow, 2008. 144 p. (In Russian)

43. Garifzyanov A.R., Zhukov N.N., Ivanishchev V.V. Formation and physiological reactions of reactive oxygen species in plant cells. Sovrem. Probl. Nauki Obraz., 2011, no. 2, pp. 26–32. (In Russian)


Review

For citations:


Fedorova D.G., Nazarova N.M., Gvozdikova A.M., Ukenov B.S. Comprehensive assessment of morphophysiological characteristics in Нelianthus annuus L. seedlings under combined stress. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(3):458-481. (In Russ.) https://doi.org/10.26907/2542-064X.2025.3.458-481

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)