Preview

Ученые записки Казанского университета. Серия Естественные науки

Расширенный поиск

Диатомовые микроводоросли как продуценты фукоксантина и полиненасыщенных жирных кислот

https://doi.org/10.26907/2542-064X.2025.3.399-440

Аннотация

В обзорной статье представлен анализ современных литературных данных по диатомовым микроводорослям с целью оценки их потенциала как продуцентов биологически ценных веществ, таких как фукоксантин и полиненасыщенные жирные кислоты (ПНЖК). Приведено общее описание биохимических, физиологических, генетических особенностей диатомовых водорослей, которые обеспечивают их потенциал для использования в биотехнологических производствах. Представлена общая характеристика фукоксантина и ПНЖК, а также их терапевтические и профилактические свойства, способствующие устойчивому росту спроса на эти ценные биоресурсы. Проанализировано содержание фукоксантина и ПНЖК и продуктивность у различных видов микроводорослей. Представлен обзор диатомовой водоросли Phaeodactylum tricornutum как перспективного объекта для коммерческого производства фукоксантина и жирных кислот, в частности, общая характеристика вида, современные методы его выращивания и перспективы его генетической модификации. Проанализировано влияние условий культивирования на накопление фукоксантина и ПНЖК у P. tricornutum, а также рассмотрены некоторые аспекты переработки биомассы, в том числе процессы сбора урожая и экстракции биологически ценных веществ. Оценены перспективы комплексной переработки биомассы для повышения эффективности биотехнологических производств.

Об авторах

А. Л. Авсиян
Федеральный исследовательский центр «Институт биологии южных морей имени А.О. Ковалевского РАН»
Россия

Анна Львовна Авсиян - младший научный сотрудник отдела биотехнологии и фиторесурсов.

Севастополь


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



И. Н. Гудвилович
Федеральный исследовательский центр «Институт биологии южных морей имени А.О. Ковалевского РАН»
Россия

Ирина Николаевна Гудвилович - кандидат биологических наук, старший научный сотрудник отдела биотехнологии и фиторесурсов.

Севастополь


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Список литературы

1. Bowler C., Vardi A., Allen A.E. Oceanographic and biogeochemical insights from diatom genomes // Annu. Rev. Mar. Sci. 2010. V. 2. P. 333–365. https://10.1146/annurev-marine-120308-081051.

2. Butler T., Kapoore R.V., Vaidyanathan S. Phaeodactylum tricornutum: A diatom cell factory // Trends Biotechnol. 2020. V. 38, No. 6. P. 606–622. https://doi.org/10.1016/j.tibtech.2019.12.023.

3. Benoiston A.-S., Ibarbalz F.M., Bittner L., Guidi L., Jahn O., Dutkiewicz S., Bowler C. The evolution of diatoms and their biogeochemical functions // Philos. Trans. R. Soc., B. 2017. V. 372, No. 1728. Art. 20160397. https://doi.org/10.1098/rstb.2016.0397.

4. Lima-Mendez G., Faust K., Henry N., Decelle J., Colin S., Carcillo F., Chaffron S., IgnacioEspinosa J.C., Roux S., Vincent F., Bittner L., Darzi Y., Wang J., Audic S., Berline L., Bontempi G., Cabello A.M., Coppola L., Cornejo-Castillo F.M., d’Ovidio F., De Meester L., Ferrera I., Garet-Delmas M.-J., Guidi L., Lara E., Pesant S., Royo-Llonch M., Salazar G., Sánchez P., Sebastian M., Souffreau C., Dimier C., Picheral M., Searson S., Kandels-Lewis S., Tara Oceans Coordinators, Gorsky G., Not F., Ogata H., Speich S., Stemmann L., Weissenbach J., Wincker P., Acinas S.G., Sunagawa S., Bork P., Sullivan M.B., Karsenti E., Bowler C., de Vargas C., Raes J. Determinants of community structure in the global plankton interactome // Science. 2015. V. 348, No 6237. Art. 1262073. https://doi.org/10.1126/science.1262073.

5. Reinfelder J.R., Milligan A.J., Morel F.M.M. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom // Plant Physiol. 2004. V. 135, No 4. P. 2106–2111. https://doi.org/10.1104/pp.104.041319.

6. Brembu T., Chauton M.S., Winge P., Bones A.M., Vadstein O. Dynamic responses to silicon in Thalasiossira pseudonana identification, characterisation and classification of signature genes and their corresponding protein motifs // Sci. Rep. 2017. V. 7, No 1. Art. 4865. https://doi.org/10.1038/s41598-017-04921-0.

7. Tirichine L., Rastogi A., Bowler C. Recent progress in diatom genomics and epigenomics // Curr. Opin. Plant Biol. 2017. V. 36. P. 46–55. https://doi.org/10.1016/j.pbi.2017.02.001.

8. Tiwari A., Melchor-Martínez E.M., Saxena A., Kapoor N., Singh K.J., Saldarriaga-Hernández S., Parra-Saldívar R,. Iqbal H.M.N. Therapeutic attributes and applied aspects of biological macromolecules (polypeptides, fucoxanthin, sterols, fatty acids, polysaccharides, and polyphenols) from diatoms — a review // Int. J. Biol. Macromol. 2021. V. 171. P. 398–413. https://doi.org/10.1016/j.ijbiomac.2020.12.219.

9. Nieri P., Carpi S., Esposito R., Costantini M., Zupo V. Bioactive molecules from marine diatoms and their value for the nutraceutical industry // Nutrients. 2023. V. 15, No 2. Art. 464. https://doi.org/10.3390/nu15020464.

10. Dhaouadi F., Awwad F., Diamond A., Desgagné-Penix I. Diatoms’ breakthroughs in biotechnology: Phaeodactylum tricornutum as a model for producing high-added value molecules // Am. J. Plant Sci. 2020. V. 11, No 10. P. 1632–1670. https://doi.org/10.4236/ajps.2020.1110118.

11. Pajot A., Hao Huynh G., Picot L., Marchal L., Nicolau E. Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes // Mar. Drugs. 2022. V. 20, No 4. Art. 222. https://doi.org/10.3390/md20040222.

12. Englert G., Bjørnland T., Liaaen-Jensen S. 1D and 2D NMR study of some allenic carotenoids of the fucoxanthin series // Magn. Reson. Chem. 1990. V. 28, No 6. P. 519–528. https://doi.org/10.1002/mrc.1260280610.

13. Kawee-ai A., Kuntiya A., Kim S.M. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum // Nat. Prod. Commun. 2013. V. 8, No 10. P. 1381–1386. https://doi.org/10.1177/1934578X1300801010.

14. Zhang Y., Fang H., Xie Q., Sun J., Liu R., Hong Z., Yi R., Wu H. Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers // Molecules. 2014. V. 19, No 2. P. 2100–2113. https://doi.org/10.3390/molecules19022100.

15. Büchel C. Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states // Biochemistry. 2003. V. 42, No 44. P. 13027–13034. https://doi.org/10.1021/bi0349468.

16. Seth K., Kumar A., Rastogi R.P., Meena M., Vinayak V,. Harish. Bioprospecting of fucoxanthin from diatoms – challenges and perspectives // Algal Res. 2021. V. 60. Art. 102475. https://doi.org/10.1016/j.algal.2021.102475.

17. Coesel S., Oborník M., Varela J., Falciatore A., Bowler C. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms // PLoS One. 2008. V. 3, No 8. Art. e2896. https://doi.org/10.1371/journal.pone.0002896.

18. Marella T.K., Tiwari A. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin // Bioresour. Technol. 2020. V. 307. Art. 123245. https://doi.org/10.1016/j.biortech.2020.123245.

19. Gérin S., Delhez T., Corato A., Remacle C., Franck F. A novel culture medium for freshwater diatoms promotes efficient photoautotrophic batch production of biomass, fucoxanthin, and eicosapentaenoic acid // J. Appl. Phycol. 2020. V. 32, No 3. P. 1581–1596. https://doi.org/10.1007/s10811-020-02097-1.

20. Sathasivam R., Ki J.-S. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries // Mar. Drugs. 2018. V. 16, No 1. Art. 26. https://doi.org/10.3390/md16010026.

21. Koo S.Y., Hwang J.-H., Yang S.-H., Um J.-I., Hong K.W., Kang K., Pan C.-H., Hwang K.T., Kim S.M. Anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin // Mar. Drugs. 2019. V. 17, No 5. Art. 311. https://doi.org/10.3390/md17050311.

22. Liu M., Li W., Chen Y., Wan X., Wang J. Fucoxanthin: A promising compound for human inflammationrelated diseases // Life Sci. 2020. V. 255. Art. 117850. https://doi.org/10.1016/j.lfs.2020.117850.

23. Zarekarizi A., Hoffmann L., Burritt D. Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits // J. Appl. Phycol. 2019. V. 31, No 1. P. 281–299. https://doi.org/10.1007/s10811-018-1558-3.

24. Petrushkina M., Gusev E., Sorokin B., Zotko N., Mamaeva A., Filimonova A., Kulikovskiy M., Maltsev Y., Yampolsky I., Guglya E., Vinokurov V., Namsaraev Z., Kuzmin D. Fucoxanthin production by heterokont microalgae // Algal Res. 2017. V. 24, Pt A. P. 387–393. https://doi.org/10.1016/j.algal.2017.03.016.

25. Mohamadnia S., Tavakoli O., Faramarzi M.A., Shamsollahi Z. Production of fucoxanthin by the microalga Tisochrysis lutea: A review of recent developments // Aquaculture. 2019. V. 516. Art. 734637. https://doi.org/10.1016/j.aquaculture.2019.734637.

26. McClure D.D., Luiz A., Gerber B., Barton G.W., Kavanagh J.M. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum // Algal Res. 2018. V. 29. P. 41–48. https://doi.org/10.1016/j.algal.2017.11.015.

27. Fernández F.G.A., Hall D.O., Guerrero E.C., Rao K.K., Grima E.M. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor // J. Biotechnol. 2003. V. 103, No 2. P. 137–152. https://doi.org/10.1016/s0168-1656(03)00101-9.

28. Gao F., Sá M., Teles (Cabanelas, ITD)I., Wijffels R.H., Barbosa M.J. Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions // Biotechnol. Bioeng. 2021. V. 118, No 3. P. 1355–1365. https://doi.org/10.1002/bit.27657.

29. Xia S., Gao B., Fu J., Xiong J., Zhang C. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes // J. Biosci. Bioeng. 2018. V. 126, No 6. P. 723–729. https://doi.org/10.1016/j.jbiosc.2018.06.002.

30. Wang H., Zhang Y., Chen L., Cheng W., Liu T. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures // Bioprocess Biosyst. Eng. 2018. V. 41, No 7. P. 1061–1071. https://doi.org/10.1007/s00449-018-1935-y.

31. Kim S.M., Jung Y.-J., Kwon O.-N., Cha K.H., Um B.-H., Chung D., Pan C.-H. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum // Appl. Biochem. Biotechnol. 2012. V. 166, No 7. P. 1843–1855. https://doi.org/10.1007/s12010-012-9602-2.

32. Kim S.M., Kang S.-W., Kwon O.-N., Chung D., Pan C.-H. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application // J. Korean Soc. Appl. Biol. Chem. 2012. V. 55, No 4. P. 477–483. https://doi.org/10.1007/s13765-012-2108-3.

33. Sun Z., Wang X., Liu J. Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin // Algal Res. 2019. V. 41. Art. 101545. https://doi.org/10.1016/j.algal.2019.101545.

34. Nakamura M.T., Nara T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases // Annu. Rev. Nutr. 2004. V. 24. P. 345–376. https://doi.org/10.1146/annurev.nutr.24.121803.063211.

35. Adarme-Vega T.C., Lim D.K.Y., Timmins M., Vernen F., Li Y., Schenk P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production // Microb. Cell Fact. 2012. V. 11. Art. 96. https://doi.org/10.1186/1475-2859-11-96.

36. De Roos B., Mavrommatis Y., Brouwer I.A. Long-chain n-3 polyunsaturated fatty acids: New insights into mechanisms relating to inflammation and coronary heart disease // Br. J. Pharmacol. 2009. V. 158, No 2. P. 413–428. https://doi.org/10.1111/j.1476-5381.2009.00189.x.

37. De Lau L.M.L., Bornebroek M., Witteman J.C.M., Hofman A., Koudstaal P.J., Breteler M.M.B. Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study // Neurology. 2005. V. 64, No 12. P. 2040–2045. https://doi.org/10.1212/01.WNL.0000166038.67153.9F.

38. Morris M.C., Evans D.A., Bienias J.L., Tangney C.C., Bennett D.A., Wilson R.S., Aggarwal N., Schneider J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease // Arch. Neurol. 2003. V. 60, No 7. P. 940–946. https://doi.org/10.1001/archneur.60.7.940.

39. Hibbeln J.R., Davis J.M., Steer C., Emmett P., Rogers I., Williams C., Golding J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study // Lancet. 2007. V. 369, No 9561. P. 578–585. https://doi.org/10.1016/S0140-6736(07)60277-3.

40. Drouin G., Rioux V., Legrand P. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family // Biochimie. 2019. V. 159. P. 36–48. https://doi.org/10.1016/j.biochi.2019.01.022.

41. Tallima H., El Ridi R. Arachidonic acid: Physiological roles and potential health benefits – a review // J. Adv. Res. 2018. V. 11. P. 33–41. https://doi.org/10.1016/j.jare.2017.11.004.

42. Taneja A., Singh H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods // Annu. Rev. Food Sci. Technol. 2012. V. 3. P. 105–123. https://doi.org/10.1146/annurev-food-022811-101130.

43. Opute F.I. Lipid and fatty-acid composition of diatoms // J. Exp. Bot. 1974. V. 25, No 4. P. 823–835. https://doi.org/10.1093/jxb/25.4.823.

44. Maltsev Y., Maltseva K. Fatty acids of microalgae: Diversity and applications // Rev. Environ. Sci. Biotechnol. 2021. V. 20, No 2. P. 515–547. https://doi.org/10.1007/s11157-021-09571-3.

45. Stonik V., Stonik I. Low-molecular-weight metabolites from diatoms: Structures, biological roles and biosynthesis // Mar. Drugs. 2015. V. 13, No 6. P. 3672–3709. https://doi.org/10.3390/md13063672.

46. Wu H., Li T., Wang G., Dai S., He H., Xiang W. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from different origins // Chin. J. Oceanol. Limnol. 2016. V. 34, No 2. P. 391–398. http://dx.doi.org/10.1007/s00343-015-4325-1.

47. Yi Z., Xu M., Di X., Brynjolfsson S., Fu W. Exploring valuable lipids in diatoms // Front. Mar. Sci. 2017. V. 4. Art. 17. https://doi.org/10.3389/fmars.2017.00017.

48. Sayanova O., Mimouni V., Ulmann L., Morant-Manceau A., Pasquet V., Schoefs B., Napier J.A. Modulation of lipid biosynthesis by stress in diatoms // Philos. Trans. R. Soc., B. 2017. V. 372, No 1728. Art. 20160407. https://doi.org/10.1098/rstb.2016.0407.

49. Smith R., Jouhet J., Gandini C., Nekrasov V., Marechal E., Napier J.A., Sayanova, O. Plastidial acyl carrier protein Δ9-desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in Phaeodactylum tricornutum // Plant J. 2021. V. 106, No 5. P. 1247–1259. https://doi.org/10.1111/tpj.15231.

50. Yongmanitchai W., Ward O.P. Separation of lipid classes from Phaeodactylum tricornutum using silica cartridges // Phytochemistry. 1992. V. 31, No 10. P. 3405–3408. https://doi.org/10.1016/0031-9422(92)83694-T.

51. Tonon T., Harvey D., Larson T.R., Graham I.A. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae // Phytochemistry. 2002. V. 61, No 1. P. 15–24. https://doi.org/10.1016/S0031-9422(02)00201-7.

52. Steinrücken P., Erga S.R., Mjøs S.A., Kleivdal H., Prestegard S.K. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies // Algal Res. 2017. V. 26. P. 392–401. https://doi.org/10.1016/j.algal.2017.07.030.

53. Steinrücken P., Mjøs S.A., Prestegard S.K., Erga S.R. Enhancing EPA content in an Arctic diatom: A factorial design study to evaluate interactive effects of growth factors // Front. Plant Sci. 2018. V. 9. Art. 491. https://doi.org/10.3389/fpls.2018.00491.

54. Steinrücken P., Prestegard S.K., de Vree, J.H., Storesund J.E., Pree B., Mjøs S.A., Erga S.R. Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions // Algal Res. 2018. V. 30. P. 11–22. https://doi.org/10.1016/j.algal.2017.12.001.

55. Liang Y., Maeda Y., Sunaga M., Muto M., Matsumoto M., Yoshino T., Tanaka T. Biosynthesis of polyunsaturated fatty acids in the oleaginous marine diatom Fistulifera sp strain JPCC DA0580 // Mar. Drugs. 2013. V. 11, No 12. P. 5008–5023. https://doi.org/10.3390/md11125008.

56. Ying L., Kang-sen M., Shi-chun S. Total lipid and fatty acid composition of eight strains of marine diatoms // Chin. J. Oceanol. Limnol. 2000. V. 18, No 4. P. 345–349. https://doi.org/10.1007/BF02876083.

57. Jiang Y., Laverty K.S., Brown J., Nunez M., Brown L., Chagoya J., Burow M., Quigg A. Effects of fluctuating temperature and silicate supply on the growth, biochemical composition and lipid accumulation of Nitzschia sp. // Bioresour. Technol. 2014. V. 154. P. 336–344. https://doi.org/10.1016/j.biortech.2013.12.068.

58. Kumar B.R., Deviram G., Mathimani T., Duc P.A., Pugazhendhi A. Microalgae as rich source of polyunsaturated fatty acids // Biocatal. Agric. Biotechnol. 2019. V. 17. P. 583–588. https://doi.org/10.1016/J.BCAB.2019.01.017.

59. Lu Q., Li H., Xiao Y., Liu H. A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae // Algal Res. 2021. V. 55. Art. 102281. https://doi.org/10.1016/j.algal.2021.102281.

60. Torzillo G., Faraloni C., Silva A.M., Kopecký J., Pilný J., Masojídek J. Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds // Eur. J. Phycol. 2012. V. 47, No 2. P. 169–181. https://doi.org/10.1080/09670262.2012.683202.

61. Butler T.O., Padmaperuma G., Lizzul A.M., McDonald J., Vaidyanathan S. Towards a Phaeodactylum tricornutum biorefinery in an outdoor UK environment // Bioresour. Technol. 2022. V. 344, Pt. B. Art. 126320. https://doi.org/10.1016/j.biortech.2021.126320.

62. Yang Z.-K., Ma Y.-H., Zheng J.-W., Yang W.-D., Liu J.-S., Li H.-Y. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum // J. Appl. Phycol. 2014. V. 26, No 1. P. 73–82. https://doi.org/10.1007/s10811-013-0050-3.

63. Alonso D.L., Belarbi E.-H., Fernández-Sevilla J.M., Rodríguez-Ruiz J., Grima E.M. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum // Phytochemistry. 2000. V. 54, No 5. P. 461–471. https://doi.org/10.1016/s0031-9422(00)00084-4.

64. De Martino A., Meichenin A., Shi J., Pan K., Bowler C. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions // J. Phycol. 2007. V. 43, No 5. P. 992–1009. https://doi.org/10.1111/j.1529-8817.2007.00384.x.

65. Yongmanitchai W., Ward O.P. Growth of and omega-3-fatty-acid production by Phaeodactylum tricornutum under different culture conditions // Appl. Environ. Microbiol. 1991. V. 57, No 2. P. 419–425. https://doi.org/10.1128/aem.57.2.419-425.1991.

66. Martin-Jézéquel V., Tesson B. 3 Phaeodactylum tricornutum polymorphism: An overview // Heimann K., Katsaros C. (Eds.) Advances in Algal Cell Biology. Berlin, Boston, MA: De Gruyter, 2013. P. 43–80. https://doi.org/10.1515/9783110229615.43.

67. Song Z. Optimisation of Phaeodactylum tricornutum as a microalgal expression host for industrial biotechnology: PhD Thesis. London: Univ. Coll. London, 2020. 188 p.

68. Ovide C., Kiefer-Meyer M.-C., Bérard C., Vergne N., Lecroq T., Plasson C., Burel C., Bernard S., Driouich A., Lerouge P., Tournier I., Dauchel H., Bardor M. Comparative in depth RNA sequencing of P. tricornutum’s morphotypes reveals specific features of the oval morphotype // Sci. Rep. 2018. V. 8, No 1. Art. 14340. https://doi.org/10.1038/s41598-018-32519-7.

69. Tesson B., Gaillard C., Martin-Jézéquel V. Insights into the polymorphism of the diatom Phaeodactylum tricornutum Bohlin // Bot. Mar. 2009. V. 52, No 2. P. 104–116. https://doi.org/10.1515/BOT.2009.012.

70. Borowitzka M.A., Volcani B.E. The polymorphic diatom Phaeodactylum tricornutum: Ultrastructure of its morphotypes // J. Phycol. 1978. V. 14, No 1. P. 10–21. https://doi.org/10.1111/j.1529-8817.1978.tb00625.x.

71. De Martino A., Bartual A., Willis A., Meichenin A., Villazán B., Maheswari U., Bowler C. Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum // Protist. 2011. V. 162, No 3. P. 462–481. https://doi.org/10.1016/j.protis.2011.02.002.

72. Davidovich N.A., Davidovich O.I., Podunai Yu.A., Shorenko K.I., Kulikovskii M.S. Reproductive properties of diatoms significant for their cultivation and biotechnology // Russ. J. Plant Physiol. 2015. V. 62, No 2. P. 153–160. https://doi.org/10.1134/S1021443715020041.

73. Francius G., Tesson B., Dague E., Martin-Jézéquel V., Dufrêne Y.F. Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes // Environ. Microbiol. 2008. V. 10, No 5. P. 1344–1356. https://doi.org/10.1111/j.1462-2920.2007.01551.x.

74. Desbois A.P., Walton M., Smith V.J. Differential antibacterial activities of fusiform and oval morphotypes of Phaeodactylum tricornutum (Bacillariophyceae) // J. Mar. Biol. Assoc. U. K. 2010. V. 90, No 4. P. 769–774. https://doi.org/10.1017/S0025315409991366.

75. Zhang W.Y., Wang F., Gao B., Huang L., Zhang C. An integrated biorefinery process: Stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass // Algal Res. 2018. V. 32. P. 193–200. https://doi.org/10.1016/j.algal.2018.04.002.

76. Remmers I.M., Martens D.E., Wijffels R.H., Lamers P.P. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities // PloS One. 2017. V. 12, No 4. Art. e0175630. https://doi.org/10.1371/journal.pone.0175630.

77. Spilling K., Brynjólfsdóttir Á., Enss D., Rischer H., Svavarsson H.G. The effect of high pH on structural lipids in diatoms // J. Appl. Phycol. 2013. V. 25, No 5. P. 1435–1439. https://doi.org/10.1007/s10811-012-9971-5.

78. Acién F.G., Fernández J.M., Magán J.J., Molina E. Production cost of a real microalgae production plant and strategies to reduce it // Biotechnol. Adv. 2012. V. 30, No 6. P. 1344–1353. https://doi.org/10.1016/j.biotechadv.2012.02.005.

79. Aghzar A., Miñambres M., Alvarez P., Presa P. A cost-benefit assessment of two multi-species algae diets for juveniles of Mytilus galloprovincialis // Thalassas. 2013. V. 29, No 1. P. 9–16.

80. Heydarizadeh P., Boureba W., Zahedi M., Huang B., Moreau B., Lukomska E., Couzinet-Mossion A., Wielgosz-Collin G., Martin-Jézéquel V., Bougaran G., Marchand J., Schoefs B. Response of CO2-starved diatom Phaeodactylum tricornutum to light intensity transition // Philos. Trans. R. Soc., B. 2017. V. 372, No 1728. Art. 20160396. https://doi.org/10.1098/rstb.2016.0396.

81. Jungandreas A., Schellenberger Costa B., Jakob T., von Bergen M., Baumann S., Wilhelm C. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern // PloS One. 2014. V. 9, No 8. Art. e99727. https://doi.org/10.1371/journal.pone.0099727.

82. Sirisuk P., Ra C.-H., Jeong G.-T., Kim S.-K. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination // Bioresour. Technol. 2018. V. 253. P. 175–181. https://doi.org/10.1016/j.biortech.2018.01.020.

83. Fernández F.G.A., Pérez J.A.S., Sevilla J.M.F., Camacho F.G., Grima E.M. Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance // Biotechnol. Bioeng. 2000. V. 68, No 2. P. 173–183. https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<173::AID-BIT6>3.0.CO;2-C.

84. Pérez E.B., Pina I.C., Rodríguez L.P. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor // Biochem. Eng. J. 2008. V. 40, No 3. P. 520–525. https://doi.org/10.1016/j.bej.2008.02.007.

85. Gao F., Cabanelas I.T.D., Wijffels R.H., Barbosa M.J. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea // New Biotechnol. 2021. V. 66. P. 16–24. https://doi.org/10.1016/j.nbt.2021.08.005.

86. Vella F.M., Sardo A., Gallo C., Landi S., Fontana A., d’Ippolito G. Annual outdoor cultivation of the diatom Thalassiosira weissflogii: Productivity, limits and perspectives // Algal Res. 2019. V. 42. Art. 101553. https://doi.org/10.1016/j.algal.2019.101553.

87. Yi Z., Xu M., Magnusdottir M., Zhang Y., Brynjolfsson S., Fu W. Photo-oxidative stressdriven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation // Mar. Drugs. 2015. V. 13, No 10. P. 6138–6151. https://doi.org/10.3390/md13106138.

88. Wang X., Liu Y.-H., Wei W., Zhou X., Yuan W., Balamurugan S., Hao T.-B., Yang W.-D., Liu J.-S., Li H.-Y. Enrichment of longchain polyunsaturated fatty acids by coordinated expression of multiple metabolic nodes in the oleaginous microalga Phaeodactylum tricornutum // J. Agric. Food Chem. 2017. V. 65, No 35. P. 7713−7720. https://doi.org/10.1021/acs.jafc.7b02397.

89. Wang S., Zhang L., Chi S., Wang G., Wang X., Liu T., Tang X. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae // Acta Oceanol. Sin. 2018. V. 37, No 4. P. 89–101. https://doi.org/10.1007/s13131-018-1178-4.

90. Eilers U., Bikoulis A., Breitenbach J., Büchel C., Sandmann G. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum // J. Appl. Phycol. 2016. V. 28, No 1. P. 123–129. https://doi.org/10.1007/s10811-015-0583-8.

91. Xue J., Niu Y.-F., Huang T., Yang W.-D., Liu J.-S., Li H.-Y. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation // Metab. Eng. 2015. V. 27. P. 1–9. https://doi.org/10.1016/j.ymben.2014.10.002.

92. Niu Y.-F., Zhang M.-H., Li D.-W., Yang W.-D., Liu J.-S., Bai W.-B., Li H.-Y. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum // Mar. Drugs. 2013. V. 11, No 11. P. 4558–4569. https://doi.org/10.3390/md11114558.

93. Niu Y.-F., Wang X., Hu D.-X., Balamurugan S., Li D.-W., Yang W.-D., Liu J.-S., Li H.-Y. Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum // Biotechnol. Biofuels. 2016. V. 9. Art. 60. https://doi.org/10.1186/s13068-016-0478-1.

94. Balamurugan S., Wang X., Wang H.-L., An C.-J., Li H., Li D.-W., Yang W.-D, Liu J.-S., Li H.-Y. Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum // Biotechnol. Biofuels. 2017. V. 10. Art. 97. https://doi.org/10.1186/s13068-017-0786-0.

95. Daboussi F., Leduc S., Maréchal A., Dubois G., Guyot V., Perez-Michaut C., Amato A., Falciatore A., Juillerat A., Beurdeley M., Voytas D.F., Cavarec L., Duchateau P. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology // Nat. Commun. 2014. V. 5. Art. 3831. https://doi.org/10.1038/ncomms4831.

96. Hamilton M.L., Haslam R.P., Napier J.A., Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids // Metab. Eng. 2014. V. 22. P. 3–9. https://doi.org/10.1016/j.ymben.2013.12.003.

97. D’Adamo S., di Visconte G.S., Lowe G., Szaub-Newton J., Beacham T., Landels A., Allen M.J., Spicer A., Matthijs M. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production // Plant Biotechnol. J. 2019. V. 17, No 1. P. 75–87. https://doi.org/10.1111/pbi.12948.

98. Kira N., Ohnishi K., Miyagawa-Yamaguchi A., Kadono T., Adachi M. Nuclear transformation of the diatom Phaeodactylum tricornutum using PCR-amplified DNA fragments by microparticle bombardment // Mar. Genomics. 2016. V. 25. P. 49–56. https://doi.org/10.1016/j.margen.2015.12.004.

99. Xie W.-H., Zhu C.-C., Zhang N.-S., Li D.-W., Yang W.-D., Liu J.-S., Sathishkumar R., Li H.-Y. Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutum // Mar. Biotechnol. 2014. V. 16, No 5. P. 538–546. https://doi.org/10.1007/s10126-014-9570-3.

100. Hempel F., Bozarth A.S., Lindenkamp N., Klingl A., Zauner S., Linne U., Steinbüchel A., Maier U.G. Microalgae as bioreactors for bioplastic production // Microb. Cell Fact. 2011. V. 10. Art. 81. https://doi.org/10.1186/1475-2859-10-81.

101. Hempel F., Maurer M., Brockmann B., Mayer C., Biedenkopf N., Kelterbaum A., Becker S., Maier U.G. From hybridomas to a robust microalgal-based production platform: Molecular design of a diatom secreting monoclonal antibodies directed against the Marburg virus nucleoprotein // Microb. Cell Fact. 2017. V. 16. Art. 131. https://doi.org/10.1186/s12934-017-0745-2.

102. Ahmad Kamal A.H., Mohd Hamidi N.F., Zakaria M.F., Ahmad A., Harun M.R., Segaran T.C., Jusoh M. Genetically engineered microalgae for enhanced bioactive compounds // Discover Appl. Sci. 2024. V. 6. Art. 482. https://doi.org/10.1007/s42452-024-06116-5.

103. Челебиева Э.С., Кладченко Е.С., Данцюк Н.В., Боровков А.Б., Водясова Е.А. Генетическая инженерия в биотехнологии микроводорослей: достижения и перспективы // Биоразнообразие и устойчивое развитие. 2024. Т. 9, № 1. С. 53–76. https://doi.org/10.21072/eco.2024.09.1.04.

104. Федеральный закон от 05.07.1996 № 86-ФЗ «О государственном регулировании в области генно-инженерной деятельности». URL: https://fsvps.gov.ru/files/federalnyj-zakon-ot-05-07-199686-fz-o-gosudar/.

105. Gao F., Teles (Cabanelas, ITD) I., Wijffels R.H., Barbosa M.J. Process optimization of fucoxanthin production with Tisochrysis lutea // Bioresour. Technol. 2020. V. 315. Art. 123894. https://doi.org/10.1016/j.biortech.2020.123894.

106. Lavaud J., Rousseau B., van Gorkom H.J., Etienne A.-L. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum // Plant Physiol. 2002. V. 129, No 3. P. 1398–1406. https://doi.org/10.1104/pp.002014.

107. Demmig-Adams B., Garab G., Adams W., III, Govindjee (Eds.) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Ser.: Advances in Photosynthesis and Respiration. V. 40. Dordrecht: Springer, 2014. xxxviii, 649 p. https://doi.org/10.1007/978-94-017-9032-1.

108. Zigman M., Dubinsky Z., Iluz D. Chapter 9 – The xanthophyll cycle in aquatic phototrophs and its role in the mitigation of photoinhibition and photodynamic damage // Najafpour M.M. (Ed.) Applied Photosynthesis. London: InTech, 2012. P. 191–206. https://doi.org/10.5772/31462.

109. Zhao D., Kim S.-M., Pan C.-H., Chung D. Effects of heating, aerial exposure and illumination on stability of fucoxanthin in canola oil // Food Chem. 2014. V. 145. P. 505–513. https://doi.org/10.1016/j.foodchem.2013.08.045.

110. Goss R., Jakob T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae // Photosynth. Res. 2010. V. 106, Nos 1–2. P. 103–122. https://doi.org/10.1007/s11120-010-9536-x.

111. Harris G.N., Scanlan D.J., Geider R.J. Responses of Emiliania huxleyi (Prymnesiophyceae) to step changes in photon flux density // Eur. J. Phycol. 2009. V. 44, No 1. P. 31–48. https://doi.org/10.1080/09670260802233460.

112. Müller P., Li X.-P., Niyogi K.K. Non-photochemical quenching. A response to excess light energy // Plant Physiol. 2001. V. 125, No 4. P. 1558–1566. https://doi.org/10.1104/pp.125.4.1558.

113. Gómez-Loredo A., Benavides J., Rito-Palomares M. Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions // J. Appl. Phycol. 2016. V. 28, No 2. P. 849–860. https://doi.org/10.1007/s10811-015-0635-0.

114. Wagner H., Jakob T., Lavaud J., Wilhelm C. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation // Photosynth. Res. 2016. V. 128, No 2. P. 151–161. https://doi.org/10.1007/s11120-015-0209-7.

115. Huete-Ortega M., Okurowska K., Kapoore R.V., Johnson M.P., Gilmour D.J., Vaidyanathan S. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1) // Biotechnol. Biofuels. 2018. V. 11. Art. 60. https://doi.org/10.1186/s13068-018-1061-8.

116. Nur M.M.A., Muizelaar W., Boelen P., Buma A.G.J. Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent // J. Appl. Phycol. 2019. V. 31, No 1. P. 111–122. https://doi.org/10.1007/s10811-018-1563-6.

117. Pereira H., Sá M., Maia I., Rodrigues A., Teles I., Wijffels R.H., Navalho J., Barbosa M. Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale // Algal Res. 2021. V. 56. Art. 102322. https://doi.org/10.1016/j.algal.2021.102322.

118. Cui Y., Thomas-Hall S.R., Schenk P.M. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: Progress in lipid induction techniques towards industry adoption // Food Chem. 2019. V. 297. Art. 124937. https://doi.org/10.1016/j.foodchem.2019.06.004.

119. Qiao H., Cong C., Sun C., Li B., Wang J., Zhang L. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum // Aquaculture. 2016. V. 452. P. 311–317. https://doi.org/10.1016/j.aquaculture.2015.11.011.

120. Osborn H.L., Hook S.E. Using transcriptomic profiles in the diatom Phaeodactylum tricornutum to identify and prioritize stressors // Aquat. Toxicol. 2013. V. 138–139. P. 12–25. https://doi.org/10.1016/j.aquatox.2013.04.002.

121. Yang Z.-K., Niu Y.-F., Ma Y.-H., Xue J., Zhang M.-H., Yang W.-D., Liu J.-S., Lu S.-H., Guan Y., Li H.-Y. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation // Biotechnol. Biofuels. 2013. V. 6. Art. 67. https://doi.org/10.1186/1754-6834-6-67.

122. Levitan O., Dinamarca J., Zelzion E., Lun D.S., Guerra L.T., Kim M.K, Kim J., Van Mooy B.A.S., Bhattacharya D., Falkowski P.G. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress // Proc. Natl. Acad. Sci. U.S.A. 2015. V. 112, No 2. P. 412–417. https://doi.org/10.1073/pnas.1419818112.

123. Guerra L.T., Levitan O., Frada M.J., Sun J.S., Falkowski P.G., Dismukes G.C. Regulatory branch points affecting protein and lipid biosynthesis in the diatom Phaeodactylum tricornutum // Biomass Bioenergy. 2013. V. 59. P. 306–315. https://doi.org/10.1016/j.biombioe.2013.10.007.

124. Alipanah L., Rohloff J., Winge P., Bones A.M., Brembu T. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum // J. Exp. Bot. 2015. V. 66, No 20. P. 6281–6296. https://doi.org/10.1093/jxb/erv340.

125. Chauton M.S., Olsen Y., Vadstein O. Biomass production from the microalga Phaeodactylum tricornutum: Nutrient stress and chemical composition in exponential fedbatch cultures // Biomass Bioenergy. 2013. V. 58. P. 87–94. https://doi.org/10.1016/j.biombioe.2013.10.004.

126. Valenzuela J., Mazurie A., Carlson R.P., Gerlach R., Cooksey K.E., Peyton B.M., Fields M.W. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum // Biotechnol. Biofuels. 2012. V. 5. Art. 40. https://doi.org/10.1186/1754-6834-5-40.

127. Abdullahi A.S., Underwood G.J.C., Gretz M.R. Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum // J. Phycol. 2006. V. 42, No 2. P. 363–378. https://doi.org/10.1111/j.1529-8817.2006.00193.x.

128. Yang Z.-K., Zheng J.-W., Niu Y.-F., Yang W.-D., Liu J.-S., Li H.-Y. Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress // Environ. Microbiol. 2014. V. 16, No 6. P. 1793–1807. https://doi.org/10.1111/1462-2920.12411.

129. Solomon C.M., Collier J.L., Berg G.M., Glibert P.M. Role of urea in microbial metabolism in aquatic systems: A biochemical and molecular review // Aquat. Microb. Ecol. 2010. V. 59, No 1. P. 67–88. https://doi.org/10.3354/ame01390.

130. Garcı́a M.C.C., Mirón A.S., Sevilla J.M.F., Grima E.M., Camacho F.G. Mixotrophic growth of the microalga Phaeodactylum tricornutum: Influence of different nitrogen and organic carbon sources on productivity and biomass composition // Process Biochem. 2005. V. 40, No 1. P. 297–305. https://doi.org/10.1016/J.PROCBIO.2004.01.016.

131. Guzmán-Murillo M.A., López-Bolaños C.C., Ledesma-Verdejo T., Roldan-Libenson G., CadenaRoa M.A., Ascencio F. Effects of fertilizer-based culture media on the production of exocellular polysaccharides and cellular superoxide dismutase by Phaeodactylum tricornutum (Bohlin) // J. Appl. Phycol. 2007. V. 19, No 1. P. 33–41. https://doi.org/10.1007/s10811-006-9108-9.

132. Wu S., Huang A., Zhang B., Huan L., Zhao P., Lin A., Wang G. Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration // Biotechnol. Biofuels. 2015. V. 8. Art. 78. https://doi.org/10.1186/s13068-015-0262-7.

133. Rost B., Kranz S.A., Richter K.-U., Tortell P.D. Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton // Limnol. Oceanogr.: Methods. 2007. V. 5, No 10. P. 328–337. https://doi.org/10.4319/lom.2007.5.328.

134. Villanova V., Fortunato A.E., Singh D., Bo D.D., Conte M., Obata T., Jouhet J., Fernie A.R., Marechal E., Falciatore A., Pagliardini J., Le Monnier A., Poolman M., Curien G., Petroutsos D., Finazzi G. Investigating mixotrophic metabolism in the model diatom // Philos. Trans. R. Soc., B. 2017. V. 372, No 1728. Art. 20160404. https://doi.org/10.1098/rstb.2016.0404.

135. Bartual A., Gálvez J.A. Growth and biochemical composition of the diatom Phaeodactylum tricornutum at different pH and inorganic carbon levels under saturating and subsaturating light regimes // Bot. Mar. 2002. V. 45, No 6. P. 491–501. https://doi.org/10.1515/BOT.2002.052.

136. Chauton M.S., Winge P., Brembu T., Vadstein O., Bones A.M. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles // Plant Physiol. 2013. V. 161, No 2. P. 1034–1048. https://doi.org/10.1104/pp.112.206177.

137. Bai X., Song H., Lavoie M., Zhu K., Su Y., Ye H., Chen S., Fu Z., Qian H. Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum // Sci. Rep. 2016. V. 6. Art. 25494. https://doi.org/10.1038/srep25494.

138. Zheng Y., Quinn A.H., Sriram G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum // Microb. Cell Fact. 2013. V. 12. Art. 109. https://doi.org/10.1186/1475-2859-12-109.

139. Kräbs G., Büchel C. Temperature and salinity tolerances of geographically separated Phaeodactylum tricornutum Böhlin strains: Maximum quantum yield of primary photochemistry, pigmentation, proline content and growth // Bot. Mar. 2011. V. 54, No 3. P. 231–241. https://doi.org/10.1515/bot.2011.037.

140. Dodson V.J., Mouget J.-L., Dahmen J.L., Leblond J.D. The long and short of it: Temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum // Hydrobiologia. 2014. V. 727, No 1. P. 95–107. https://doi.org/10.1007/s10750-013-1790-4.

141. Jiang H., Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) // J. Phycol. 2004. V. 40, No 4. P. 651–654. https://doi.org/10.1111/j.1529-8817.2004.03112.x.

142. ‘t Lam G.P., Vermuë M.H., Eppink M.H.M., Wijffels R.H., van den Berg C. Multi-product microalgae biorefineries: From concept towards reality // Trends Biotechnol. 2018. V. 36, No 2. P. 216–227. https://doi.org/10.1016/j.tibtech.2017.10.011.

143. Ruiz J., Olivieri G., de Vree J., Bosma R., Willems P., Reith J.H., Eppink M.H.M., Kleinegris D.M.M., Wijffels R.H., Barbosa M.J. Towards industrial products from microalgae // Energy Environ. Sci. 2016. V. 9, No 10. P. 3036–3043. https://doi.org/10.1039/c6ee01493c.

144. Vandamme D., Foubert I., Meesschaert B., Muylaert K. Flocculation of microalgae using cationic starch // J. Appl. Phycol. 2010. V. 22, No 4. P. 525–530. https://doi.org/10.1007/s10811-009-9488-8.

145. Vandamme D., Foubert I., Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production // Trends Biotechnol. 2013. V. 31, No 4. P. 233–239. https://doi.org/10.1016/j.tibtech.2012.12.005.

146. Şirin S., Trobajo R., Ibanez C., Salvadó J. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinityinduced flocculation // J. Appl. Phycol. 2012. V. 24, No 5. P. 1067–1080. https://doi.org/10.1007/s10811-011-9736-6.

147. Ryckebosch E., Muylaert K., Eeckhout M., Ruyssen T., Foubert I. Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum // J. Agric. Food Chem. 2011. V. 59, No 20. P. 11063–11069. https://doi.org/10.1021/jf2025456.

148. Kapoore R.V., Butler T.O., Pandhal J., Vaidyanathan S. Microwave-assisted extraction for microalgae: From biofuels to biorefinery // Biology. 2018. V. 7, No 1. Art. 18. https://doi.org/10.3390/biology7010018.

149. Mathimani T., Uma L., Prabaharan D. Optimization of direct solvent lipid extraction kinetics on marine trebouxiophycean alga by central composite design – bioenergy perspective // Energy Convers. Manage. 2017. V. 142. P. 334–346. https://doi.org/10.1016/j.enconman.2017.03.050.

150. Esquivel-Hernández D.A., Rodríguez-Rodríguez J., Rostro-Alanis M., Cuéllar-Bermúdez S.P., Mancera-Andrade E.I., Núñez-Echevarría J.E., García-Pérez J.S., Chandra R., Parra-Saldívar R. Advancement of green process through microwave-assisted extraction of bioactive metabolites from Arthrospira platensis and bioactivity evaluation // Bioresour. Technol. 2017. V. 224. P. 618–629. https://doi.org/10.1016/j.biortech.2016.10.061.

151. Melo T., Figueiredo A.R.P., da Costa E., Couto D., Silva J., Rosário Domingues M., Domingues P. Ethanol extraction of polar lipids from Nannochloropsis oceanica for food, feed, and biotechnology applications evaluated using lipidomic approaches // Mar. Drugs. 2021. V. 19, No 11. Art. 593. https://doi.org/10.3390/md19110593.

152. Delbrut A., Albina P., Lapierre T., Pradelles R., Dubreucq E. Fucoxanthin and polyunsaturated fatty acids coextraction by a green process // Molecules. 2018. V. 23, No 4. Art. 874. https://doi.org/10.3390/molecules23040874.

153. Derwenskus F., Metz F., Gille A., Schmid-Staiger U., Briviba K., Schließmann U., Hirth T. Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids // GCB Bioenergy. 2019. V. 11, No 1. P. 335–344. https://doi.org/10.1111/gcbb.12563.

154. Sørensen M., Berge G.M., Reitan K.I., Ruyter B. Microalga Phaeodactylum tricornutum in feed for Atlantic salmon (Salmo salar) — effect on nutrient digestibility, growth and utilization of feed // Aquaculture. 2016. V. 460. P. 116–123. https://doi.org/10.1016/j.aquaculture.2016.04.010.

155. di Visconte G.S., Spicer A., Chuck C.J., Allen M.J. The microalgae biorefinery: A perspective on the current status and future opportunities using genetic modification // Appl. Sci. 2019. V. 9, No 22. Art. 4793. https://doi.org/10.3390/app9224793.

156. Chauton M.S., Reitan K.I., Norsker N.H., Tveterås R., Kleivdal H.T. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: Research challenges and possibilities // Aquaculture. 2015. V. 436. P. 95–103. https://doi.org/10.1016/j.aquaculture.2014.10.038.

157. Pérez-López P., González-García S., Allewaert C., Verween A., Murray P., Feijoo G., Moreira M.T. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum // Sci. Total Environ. 2014. V. 466–467. P. 991–1002. https://doi.org/10.1016/j.scitotenv.2013.07.105.

158. Lourenço-Lopes C., Fraga-Corral M., Jimenez-Lopez C., Carpena M., Pereira A.G., Garcia-Oliveira P., Prieto M.A., Simal-Gandara J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries // Trends Food Sci. Technol. 2021. V. 117. P. 163–181. https://doi.org/10.1016/j.tifs.2021.03.012.

159. Celi C., Fino D., Savorani F. Phaeodactylum tricornutum as a source of value-added products: A review on recent developments in cultivation and extraction technologies // Bioresour. Technol. Rep. 2022. V. 19. Art. 101122. https://doi.org/10.1016/j.biteb.2022.101122.

160. Narala R.R., Garg S., Sharma K.K., Thomas-Hall S.R., Deme M., Li Y., Schenk P.M. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system // Front. Energy Res. 2016. V. 4. Art. 29. https://doi.org/10.3389/fenrg.2016.00029.

161. Wang X., Balamurugan S., Liu S.-F., Zhang M.-M., Yang W.-D., Liu J.-S., Li H.-Y., Lin C.S.K. Enhanced polyunsaturated fatty acid production using food wastes and biofuels byproducts by an evolved strain of Phaeodactylum tricornutum // Bioresour. Technol. 2020. V. 296. Art. 122351. https://doi.org/10.1016/j.biortech.2019.122351.


Рецензия

Для цитирования:


Авсиян А.Л., Гудвилович И.Н. Диатомовые микроводоросли как продуценты фукоксантина и полиненасыщенных жирных кислот. Ученые записки Казанского университета. Серия Естественные науки. 2025;167(3):399-440. https://doi.org/10.26907/2542-064X.2025.3.399-440

For citation:


Avsiyan A.L., Gudvilovych I.N. Diatoms as producers of fucoxanthin and polyunsaturated fatty acids. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(3):399-440. (In Russ.) https://doi.org/10.26907/2542-064X.2025.3.399-440

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)