The effect of placenta hydrolysate on the physiological parameters and survival of mice exposed to 6.5 Gy X-ray irradiation
https://doi.org/10.26907/2542-064X.2025.3.385-398
Abstract
The radioprotective properties of a human placenta hydrolysate known commercially as Laennec (Japan Bio Products, Co. Ltd., Japan) were studied. The preparation was administered intraperitoneally to male ICR (CD-1) mice using two regimens. In the first scenario, the mice received 112 μg/g of the preparation at 30 min and one, two, and three days after irradiation. Alternatively, they were given five daily injections of the preparation at a dosage of 112 μg/g and exposed to 6.5 Gy irradiation on the third day after the final administration. The efficacy of the preparation was assessed by 30-day survival rate, as well as by biological indices obtained four days after irradiation (number of nucleated cells in bone marrow, content of thiobarbituric acid reactive substances (TBARS) in liver, and leukocyte and platelet levels in blood). Neither of the two regimens improved survival or alleviated pancytopenia in the irradiated mice. However, the reduced TBARS contents in liver suggest that the preparation may exert a slight inhibitory effect on the metabolism of lipid radiotoxins.
About the Authors
L. A. RomodinRussian Federation
Leonid A. Romodin - Cand. Sci. (Biology), Senior Researcher, Laboratory of Radiation Biophysics.
Moscow
Competing Interests:
The authors declare no conflicts of interest
O. V. Nikitenko
Russian Federation
Olga V. Nikitenko - Cand. Sci. (Biology), Head of Laboratory of Radiation Immunology and Experimental Therapy of Radiation Injuries, SRC – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Senior Researcher, Laboratory of Heavy Ion Radiobiology, SRC – Institute of Biomedical Problems of RAS
Moscow
Competing Interests:
The authors declare no conflicts of interest
T. M. Bychkova
Russian Federation
Taisia M. Bychkova - Cand. Sci. (Biology), Senior Researcher, Laboratory of Radiation Immunology and Experimental Therapy of Radiation Injuries, SRC – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Senior Researcher, Laboratory of Heavy Ion Radiobiology, SRC – Institute of Biomedical Problems of RAS.
Moscow
Competing Interests:
The authors declare no conflicts of interest
A. A. Moskovskij
Russian Federation
Alexander A. Moskovskij - Laboratory Assistant, Laboratory of Combined Radiation Injury, SRC – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency; Master’s Student, NRNU MEPhI
Moscow
Competing Interests:
The authors declare no conflicts of interest
R. G. Il’yazov
Russian Federation
Robert G. Il’yazov - Dr. Sci. (Biology), Full Professor, Corresponding Member of Tatarstan Academy of Sciences; CEO of LLC Scientific and Production Center “LIPOST RI”.
Yelabuga
Competing Interests:
The authors declare no conflicts of interest
References
1. Rozhdestvensky L.M. Challenges in the design of Russian radiation protection means in the crisis period: The search for key directions of development. Biol. Bull., 2020, vol. 47, no. 12, pp. 1659–1668. https://doi.org/10.1134/S1062359020120080.
2. Jullienne A., Malo M., Shaw K., Zheng Y., Johnston J.D., Kontulainen S., Chilibeck P.D., Dadachova E., Obenaus A., Sarty G.E. Musculoskeletal perturbations of deep space radiation: Assessment using a Gateway MRI. Life Sci. Space Res., 2024, vol. 42, pp. 74–83. https://doi.org/10.1016/j.lssr.2024.05.004.
3. Liddell L.C., Gentry D.M., Gilbert R., Marina D., Massaro Tieze S., Padgen M.R., Akiyama K., Keenan K., Bhattacharya S., Santa Maria S.R. BioSentinel: Validating sensitivity of yeast biosensors to deep space relevant radiation. Astrobiology, 2023, vol. 23, no. 6, pp. 648–656. https://doi.org/10.1089/ast.2022.0124.
4. Shivappa P., Bernhardt G.V. Natural radioprotectors on current and future perspectives: A mini-review. J. Pharm. BioAllied Sci., 2022, vol. 14, no. 2, pp. 57–71. https://doi.org/10.4103/jpbs.jpbs_502_21.
5. Raj S., Manchanda R., Bhandari M., Alam M.S. Review on natural bioactive products as radioprotective therapeutics: Present and past perspective. Curr. Pharm. Biotechnol., 2022, vol. 23, no. 14, pp. 1721–1738. https://doi.org/10.2174/1389201023666220110104645.
6. Stasiłowicz-Krzemień A., Gościniak A., Formanowicz D., Cielecka-Piontek J. Natural guardians: Natural compounds as radioprotectors in cancer therapy. Int. J. Mol. Sci., 2024, vol. 25, no. 13, art. 6937. https://doi.org/10.3390/ijms25136937.
7. Jang S.-Y., Park J.-W., Bu Y., Kang J.-O., Kim J. Protective effects of hominis placenta hydrolysates on radiation enteropathy in mice. Nat. Prod. Res., 2011, vol. 25, no. 20, pp. 1988–1992. https://doi.org/10.1080/14786419.2010.513035.
8. Seo T.-b., Han I.-s., Yoon J.-h., Seol I.-c., Kim Y.-s., Jo H.-k., An J.-j., Hong K.-e., Seo Y.-b., Kim D.-h., Park S.-k., Yang D.-c., Namgung U. Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve. Acta Pharmacol. Sin., 2006, vol. 27, no. 1, pp. 50–58. https://doi.org/10.1111/j.1745-7254.2006.00252.x.
9. Zhang Y., Mao L., Jiang A., Liu J., Lu Y., Yao C., Huang G. PRMT1 mediates the proliferation of Y79 retinoblastoma cells by regulating the p53/p21/CDC2/cyclin B pathway. Exp. Eye Res., 2024, vol. 247, art. 110040. https://doi.org/10.1016/j.exer.2024.110040.
10. Ailamazyan E.K. Akusherstvo [Obstetrics]. Moscow, GEOTAR-Media, 2022. 768 p. (In Russian)
11. Goldfarb G., Doan Ba Tri R., Duran A. Human placenta for chronic leg ulcers. Lancet, 1980, vol. 316, no. 8184, p. 40. https://doi.org/10.1016/s0140-6736(80)92921-9.
12. Luchina E.N. Morphofunctional skin changes under the combined treatment with fractional photothermolysis and Laennec for scars healing. Vestn. Estet. Med., 2012, vol. 11, no. 3, pp. 38–45. (In Russian)
13. Kuz’menko O.V., Potapov V.V., Gorelkina V.I. A method for treating benign prostatic hyperplasia. Patent RF no. 2368408. Byull. FIPS, 2009, no. 27. (In Russian)
14. Gromova O., Torshin I., Gilels A., Dibrova E., Grishina T., Volkov A., Limanova O., Tomilova I., Demidov V. Human placental preparations: Basic and clinical studies. Vrach, 2014, no. 4, pp. 67–72. (In Russian)
15. Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc., 1958, vol. 53, no. 282, pp. 457–481. https://doi.org/10.1080/01621459.1958.10501452.
16. Mantz J.M. Method for the quantitative examination of bone marrow of white rats. C. R. Seances Soc. Biol. Ses Fil., 1957, vol. 151, no. 11, pp. 1957–1960.
17. Gavrilov V.B., Gavrilova A.R., Magul’ L.M. Analysis of methods for determining lipid peroxidation products in blood serum using the thiobarbituric acid test. Vopr. Med. Khim., 1987, vol. 33, no. 1, pp. 118–122. (In Russian)
18. Zaitsev S., Mishurov A., Bogolyubova N. Comparative study of the antioxidant protection level in the Duroc boar blood based on the measurements of active products of the thiobarbituric acid. In: Muratov A., Ignateva S. (Eds.) Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021). Ser.: Lecture Notes in Networks and Systems. Vol. 354. Cham, Springer, 2022, pp. 500–506. https://doi.org/10.1007/978-3-030-91405-9_55.
19. Lisenko N.P., Pak V.V., Rogozhina L.V., Kusurova Z.G. Radiobiologiya [Radiobiology]. St. Petersburg: Lan’, 2023. 572 p. (In Russian)
20. Vasin M.V. Protivoluchevye lekarstvennye sredstva [Anti-Radiation Drugs]. Moscow, Kniga-Memuar, 2020. 239 p. (In Russian)
21. Il’in L.A., Rudnyi N.M., Suvorov N.N., Chernov G.A., Antipov V.V., Vasin M.V., Davydov B.I., Mikhailov P.P. Indralin – radioprotektor ekstrennogo deistviya. Protivoluchevye svoistva, farmakologiya, mekhanizm deistviya, klinika [Indralin As Emergency Radioprotector. Anti-Radiation Properties, Pharmacology, Mechanism of Action, and Clinical Use]. Moscow, Vtoraya Tip. Minist. Zdravookhr. Ross. Fed., 1994. 436 p. (In Russian)
22. Kuna P., Dostál M., Neruda O., Knajfl J., Petýrek P., Podzimek F., Severa J., Svoboda V., Šimša J., Špelda S., Vávrová J., Heřmanská J., Prouza Z., Pitterman P., Listík E., Navrátil L., Spurný F., Konrád F., Vilasová Z., Havránková R. Acute toxicity and radioprotective effects of amifostine (WR-2721) or cystamine in single whole body fission neutrons irradiated rats. J. Appl. Biomed., 2004, vol. 2, no. 1, pp. 43–49.
23. Togashi S.-I., Takahashi N., Iwama M., Watanabe S., Tamagawa K., Fukui T. Antioxidative collagen-derived peptides in human-placenta extract. Placenta, 2002, vol. 23, no. 6, pp. 497–502. https://doi.org/10.1053/plac.2002.0833.
24. Avissar N., Eisenmann C., Breen J.G., Horowitz S., Miller R.K., Cohen H.J. Human placenta makes extracellular glutathione peroxidase and secretes it into maternal circulation. Am. J. Physiol., 1994, vol. 267, no. 1, pp. E68–E76. https://doi.org/10.1152/ajpendo.1994.267.1.E68.
25. Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radical Biol. Med., 2018, vol. 127, pp. 160–164. https://doi.org/10.1016/j.freeradbiomed.2018.01.028.
26. Agarwal P., Bagewadi A., Keluskar V., Vinuth D.P. Superoxide dismutase, glutathione peroxidase, and catalase antioxidant enzymes in chronic tobacco smokers and chewers: A case-control study. Indian J. Dent. Res., 2019, vol. 30, no. 2, pp. 219–225. https://doi.org/10.4103/ijdr.IJDR_268_12.
Review
For citations:
Romodin L.A., Nikitenko O.V., Bychkova T.M., Moskovskij A.A., Il’yazov R.G. The effect of placenta hydrolysate on the physiological parameters and survival of mice exposed to 6.5 Gy X-ray irradiation. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(3):385-398. (In Russ.) https://doi.org/10.26907/2542-064X.2025.3.385-398