Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Calculation of Potential Barriers and Blocking Temperatures of Small Pseudo–Single-DomainParticles by Micromagnetism Methods

https://doi.org/10.26907/2542-064X.2023.4.577-589

Abstract

Numerical simulation of the process of remagnetization of small pseudo–single-domain magnetite particles (Тc = 580°С) was performed. The particles are cylindrical in shape, with a height h of 60–350 nm and a height-to-diameter ratio of 1.29. This geometry enables preferential anisotropy of the shape, causing the magnetic moment of the particle to align along the cylinder’s axis in a stable state. As the size increases, the domain structure shifts from the single-domain state (60 nm) to the flower mode (h = 70–85 nm), and then to a vortex structure. Particles in the range of h = 75–250 nm are remagnetized through a vortex state, with the axis aligned along their diameter. In the range of h = 300–350 nm, at the top of the potential barrier, the domain structure transforms from a single vortex to a multi-vortex configuration. The blocking temperatures Tb of the particles vary from 520 to 580°C, while the dependence Тb(h) is non-monotonic and manifests a “pit” at h = 90–140 nm. At the same time, at h = 300–350 nm, Tb values differ from by Тс  no more than 1°C. At h = 100 nm, the ratio of magnetic energy in the external field B of the order of the earth to thermal energy at T = Tb reaches 1. This suggests a strong nonlinearity of the TRM(B) dependence even in such small fields and particle sizes. The results obtained highlight the need to revise the existing micromagnetic models by taking into account the specific shape and deficiency of the crystal structure of particles in order to bring them in line with the properties of actual ferrimagnets present in rocks.

About the Authors

V. P. Shcherbakov
Borok Geophysical Observatory, Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

Borok, 152742 Russia



N. K. Sycheva
Borok Geophysical Observatory, Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

Borok, 152742 Russia



References

1. Néel L. Some theoretical aspects of rock-magnetism. Adv. Phys., 1955, vol. 4, no. 14, pp. 191–243. https://doi.org/10.1080/00018735500101204.

2. Shcherbakov V.P., Shcherbakova V.V. On suitability of the Thellier method of paleointensity determinations to pseudosingledomain and multidomain grains. Geophys. J. Int., 2001, vol. 146, no. 1, pp. 20–30. https://doi.org/10.1046/j.0956-540x.2001.01421.x.

3. Fabian K., Shcherbakov V.P. Energy barriers in three-dimensional micromagnetic models and the physics of thermoviscous magnetization. Geophys. J. Int., 2018, vol. 215, no. 1, pp. 314–324. https://doi.org/10.1093/gji/ggy285.

4. Ó Conbhuí P., Williams W., Fabian K., Ridley P., Nagy L., Muxworthy A.R. MERRILL: Micromagnetic earth related robust interpreted language laboratory. Geochem. Geophys., Geosyst., 2018, vol. 19, no. 4, pp. 1080–1106. https://doi.org/10.1002/2017GC007279.

5. Rave W., Fabian K., Hubert A. Magnetic states of small cubic particles with uniaxial anisotropy. J. Magn. Magn. Mater., 1998, vol. 190, no. 3, pp. 332–348. https://doi.org/10.1016/S0304-8853(98)00328-X.

6. Davies A.J. The Finite Element Method: An Introduction with Partial Differential Equations. 2nd ed. Cary, NC, Oxford University Press, 2011. 320 p.

7. Berkov D. Numerical calculation of the energy barrier distribution in disordered many-particle systems: The path integral method. J. Magn. Magn. Mater., 1998, vol. 186, nos. 1–2, pp. 199–213. https://doi.org/10.1016/S0304-8853(98)00078-X.

8. Berkov D. Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J. Phys.: Condens. Matter, 1998, vol. 10, no. 5, pp. L89–L95. https://doi.org/10.1088/0953-8984/10/5/002.

9. Heider F., Williams W. Note on temperature dependence of exchange constant in magnetite. Geophys. Res. Lett., 1988, vol. 15, no. 2, pp. 184–187. https://doi.org/10.1029/GL015i002p00184.

10. Fletcher E.J., O’Reilly W. Contribution of Fe2+ ions to the magnetocrystalline anisotropy constant K1 of Fe3-xTixO4 (0<x<0.1) // J. Phys. C: Solid State Phys. 1974. V. 7, No 1 P. 171–178. https://doi.org/10.1088/0022-3719/7/1/024

11. Heider F., Dunlop D.J., Sugiura N. Magnetic properties of hydrothermally recrystallized magnetite crystals. Science, 1987, vol. 236, no. 4806, pp. 1287–1290. https://doi.org/10.1126/science.236.4806.1287.

12. Wang Y., Ge K., Williams W., Zhou H., Wang H., Nagy L., Tauxe L., Wang J., Liu S., Liu Y. Micromagnetic modeling of a magnetically unstable zone and its geological significances. // J. Geophys. Res.: Solid Earth. 2022. V. 127, No 9. Art. e2022JB024876.

13. Nagata T. Magnetizm gornykh porod [Rock Magnetism]. Moscow, Mir, 1965. 348 p. (In Russian)

14. Prozorov R., Kogan V.G. Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. Appl., 2018, vol. 10, no. 1, art. 014030. https://doi.org/10.1103/PhysRevApplied.10.014030.

15. Shcherbakov V.P., Lhuillier F., Sycheva N.K. Exact analytical solutions for kinetic equations describing thermochemical remanence acquisition for single-domain grains: Implications for absolute paleointensity determinations. J. Geophys. Res.: Solid Earth, 2021, vol. 126, no. 5, art. e2020JB021536. https://doi.org/10.1029/2020JB021536.


Review

For citations:


Shcherbakov V.P., Sycheva N.K. Calculation of Potential Barriers and Blocking Temperatures of Small Pseudo–Single-DomainParticles by Micromagnetism Methods. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2023;165(4):577-589. (In Russ.) https://doi.org/10.26907/2542-064X.2023.4.577-589

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)