The effect of terrestrial weathering on the magnetic properties of meteorites from the Atacama Desert
https://doi.org/10.26907/2542-064X.2025.2.353-366
Abstract
Once ordinary chondrites fall on Earth, Fe–Ni minerals and troilite they contain oxidize and transform into iron oxyhydroxides and/or iron oxides, which is expected to modify their magnetic properties. In this study, the effect of long-term terrestrial weathering on the magnetic properties (magnetic susceptibility and hysteresis parameters) of 117 H and L ordinary chondrites from the Atacama Desert (Chile), a region hosting the oldest meteorite collection in the world, was investigated. The measurements revealed a consistent weathering-induced decrease in the saturation magnetization and magnetic susceptibility of both H and L chondrites. The observed trends indicate a faster initial weathering of Fe–Ni minerals compared to troilite, their transformation into mostly paramagnetic iron oxyhydroxides, as well as the formation of magnetite in the later weathering stages.
Keywords
About the Authors
D. KuzinaRussian Federation
Dilyara Kuzina - Cand. Sci. (Geology and Mineralogy), Senior Researcher, Laboratory of Paleoclimatology, Paleoecology, Paleomagnetism.
Kazan
Competing Interests:
The authors declare no conflicts of interest
J. Gattacceca
France
Jérôme Gattacceca - PhD, Senior Researcher, CEREGE – Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, CNRS.
Aix-en-Provence
Competing Interests:
The authors declare no conflicts of interest
H. Gouilloux
France
Hugo Gouilloux - Master’s Student, CEREGE – Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, CNRS.
Aix-en-Provence
Competing Interests:
The authors declare no conflicts of interest
H. Mertens
France
Hugo Mertens - Master’s Student, CEREGE – Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, CNRS.
Aix-en-Provence
Competing Interests:
The authors declare no conflicts of interest
R. Lacube
France
Romain Lacube - Master’s Student, CEREGE – Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, CNRS.
Aix-en-Provence
Competing Interests:
The authors declare no conflicts of interest
F. Demory
France
Francois Demory - PhD, Research Engineer, CEREGE – Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, CNRS.
Aix-en-Provence
Competing Interests:
The authors declare no conflicts of interest
C. Lorenz
Russian Federation
Cyril Lorenz - Cand. Sci. (Geology and Mineralogy), Senior Researcher.
Moscow
Competing Interests:
The authors declare no conflicts of interest
References
1. Weisberg M.K, McCoy T.J., Krot A.N. Systematics and evaluation of meteorite classification. In: Lauretta D.S., McSween H.Y. (Eds.) Meteorites and the Early Solar System II. Space Science Ser. Tucson, AZ, Univ. of Arizona Press, 2006, pp. 19–52. https://doi.org/10.2307/j.ctv1v7zdmm.8.
2. Gooding J.L. Weathering of stony meteorites in Antarctica. Proc. Int. Workshop Antarct. Meteorites. LPI Tech. Rep. 86–01. Annexstad J.O., Schultz L., Wänke H. (Eds.). Houston, TX, Lunar Planet. Inst., 1986, pp. 48–54.
3. Bland P.A., Zolensky M.E., Benedix G.K., Sephton M.A. Weathering of chondritic meteorites. In: Lauretta D.S., McSween H.Y. (Eds.) Meteorites and the Early Solar System II. Space Science Ser. Tucson, AZ, Univ. of Arizona Press, 2006, pp. 853–867. https://doi.org/10.2307/j.ctv1v7zdmm.45.
4. Al-Kathiri A., Hofmann B.A., Jull A.J.T., Gnos E. Weathering of meteorites from Oman: Correlation of chemical and mineralogical weathering proxies with 14C terrestrial ages and the influence of soil chemistry. Meteorit. Planet. Sci., 2005, vol. 40, no. 8, pp. 1215–1239. https://doi.org/10.1111/j.1945-5100.2005.tb00185.x.
5. Pourkhorsandi H., Debaille V., Armytage R.M.G., van Ginneken M., Rochette P., Gattacceca J. The effects of terrestrial weathering on samarium-neodymium isotopic composition of ordinary chondrites. Chem. Geol., 2021, vol. 562, art. 120056. https://doi.org/10.1016/j.chemgeo.2020.120056.
6. Pinto G.A., Tavernier A., Gattacceca J., Corgne A., Valenzuela M., Luais B., Flores L., Olivares F., Marrocchi Y. Dense collection areas and terrestrial alteration of meteorites in the Atacama Desert. Meteorit. Planet. Sci., 2024, vol. 59, no. 2, pp. 351–367. https://doi.org/10.1111/maps.14125.
7. Drouard A., Gattacceca J., Hutzler A., Rochette P., Braucher R., Bourlès D., ASTER Team, Gounelle M., Morbidelli A., Debaille V., Van Ginneken M., Valenzuela M., Quesnel Y., Martinez R. The meteorite flux of the past 2 m.y. recorded in the Atacama Desert. Geology, 2019, vol. 47, no. 7, pp. 673–676. https://doi.org/10.1130/G45831.1.
8. Sadaka C., Jr., Gattacceca J., Dumas F., Kuzina D., Braucher R., Gounelle M. Constraining the meteorite flux on Earth during the last 2 Ma. Goldschmidt 2023 Abstr., 2023. https://doi.org/10.7185/gold2023.19263.
9. Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G., Folco L., Gattacceca J., Osete M.L., Pesonen L. Magnetic classification of stony meteorites: 1. Ordinary chondrites. Meteorit. Planet. Sci., 2003, vol. 38, no. 2, pp. 251–268. https://doi.org/10.1111/j.1945-5100.2003.tb00263.x.
10. Gattacceca J., Suavet C., Rochette P., Weiss B.P., Winklhofer M., Uehara M., Friedrich J.M. Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history. Meteorit. Planet. Sci., 2014, vol. 49, no. 4, pp. 652–676. https://doi.org/10.1111/maps.12268.
11. Folco L., Rochette P., Gattacceca J., Perchiazzi N. In situ identification, pairing and classification of meteorites from Antarctica through magnetic susceptibility measurements. Meteorit. Planet. Sci., 2006, vol. 41, no. 3, pp. 343–353. https://doi.org/10.1111/j.1945-5100.2006.tb00467.x.
12. Uehara M., Gattacceca J., Rochette P., Demory F., Valenzuela E.M. Magnetic study of meteorites recovered in the Atacama desert (Chile): Implications for meteorite paleomagnetism and the stability of hot desert surfaces. Phys. Earth Planet. Inter., 2012, vols. 200–201, pp. 113–123. https://doi.org/10.1016/j.pepi.2012.04.007.
13. Hutzler A., Gattacceca J., Rochette P., Braucher R., Carro B., Christensen E.J., Cournede C., Gounelle M., Ouazaa N. L., Martinez R., Valenzuela M., Warner M., Bourles D. Description of a very dense meteorite collection area in western Atacama: Insight into the long-term composition of the meteorite flux to Earth. Meteorit. Planet. Sci., 2016, vol. 51, no. 3, pp. 468–482. https://doi.org/10.1111/maps.12607.
14. Gattacceca J., Valenzuela M., Uehara M., Jull A.J.T., Giscard M., Rochette P., Braucher R., Suavet C., Gounelle M., Morata D., Munayco P., Bourot-Denise M., Bourles D., Demory F. The densest meteorite collection area in hot deserts: The San Juan meteorite field (Atacama Desert, Chile). Meteorit. Planet. Sci., 2011, vol. 46, no. 9, pp. 1276–1287. https://doi.org/10.1111/j.1945-5100.2011.01229.x.
15. Burov B.V., Nurgaliev D.K., Yasonov P.G. Paleomagnitnyi analiz [Paleomagnetic Analysis]. Kazan, Izd. Kazan. Univ., 1986. 167 p. (In Russian)
16. Nurgaliev D.K., Yasonov P.G. Coercivity spectrometer. Utility Model Patent RF no. 81805. FIPS Byull., 2009, no. 9. (In Russian)
17. Fabian K. Approach to saturation analysis of hysteresis measurements in rock magnetism and evidence for stress dominated magnetic anisotropy in young mid-ocean ridge basalt. Phys. Earth Planet. Inter., 2006, vol. 154, nos. 3–4, pp. 299–307. https://doi.org/10.1016/j.pepi.2005.06.016.
18. Gattacceca J., Eisenlohr P., Rochette P. Calibration of in situ magnetic susceptibility measurements. Geophys. J. Int., 2004, vol. 158, no. 1, pp. 42–49. https://doi.org/10.1111/j.1365-246X.2004.02297.x.
19. Gattacceca J., Rochette P., Denise M., Consolmagno G., Folco L. An impact origin for the foliation of chondrites. Earth Planet. Sci. Lett., 2005, vol. 234, nos. 3–4, pp. 351–368. https://doi.org/10.1016/j.epsl.2005.03.002.
20. Wlotzka F. A weathering scale for the ordinary chondrites. Meteoritics, 1993, vol. 28, no. 3, p. 460.
21. Bland P.A., Smith T.B., Jull A.J.T., Berry F.J., Bevan A.W.R., Cloudt S., Pillinger C.T. The flux of meteorites to the Earth over the last 50 000 years. Mon. Not. R. Astron. Soc., 1996, vol. 283, no. 2, pp. 551–565. https://doi.org/10.1093/mnras/283.2.551.
22. Munayco P., Munayco J., de Avillez R.R., Valenzuela M., Rochette P., Gattacceca J., Scorzelli R.B. Weathering of ordinary chondrites from the Atacama Desert, Chile, by Mössbauer spectroscopy and synchrotron radiation X-ray diffraction. Meteorit. Planet. Sci., 2013, vol. 48, no. 3, pp. 457–473. https://doi.org/10.1111/maps.12067.
23. Van Ginneken M., Debaille V., Decrée S., Goderis S., Woodland A.B., Wozniakiewicz P., De Ceukelaire M., Leduc T., Claeys P. Artificial weathering of an ordinary chondrite: Recommendations for the curation of Antarctic meteorites. Meteorit. Planet. Sci., 2022, vol. 57, no. 6, pp. 1247–1266. https://doi.org/10.1111/maps.13818.
Review
For citations:
Kuzina D., Gattacceca J., Gouilloux H., Mertens H., Lacube R., Demory F., Lorenz C. The effect of terrestrial weathering on the magnetic properties of meteorites from the Atacama Desert. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):353-366. https://doi.org/10.26907/2542-064X.2025.2.353-366