Preview

Ученые записки Казанского университета. Серия Естественные науки

Расширенный поиск

Анализ и апробация методов отделения микроводорослей от культуральной среды, применимых для Porphyridium purpureum

https://doi.org/10.26907/2542-064X.2025.2.312-335

Аннотация

Описаны современные методы отделения биомассы микроводорослей от культуральных сред, а также основные преимущества и недостатки, связанные с их использованием. При выборе наиболее подходящего и экономически обоснованного метода сбора урожая микроводорослей особое внимание следует уделять масштабам производства, видам микроводорослей, составу питательных сред. Проведена апробация методов центрифугирования, гравитационного осаждения и сепарирования для отделения клеток морской микроводоросли Porphyridium purpureum от культуральной среды. Экспериментально установлено значимое превосходство метода сепарирования над двумя другими способами по сухому весу биомассы и по затраченному времени. При энергоемкости в 1 кВт метод сепарирования дает возможность обработать в 100 раз больший объем суспензии и получить 20.75 г сухой биомассы P. purpureum, что демонстрирует пятикратное превосходство над методом центрифугирования. Для обеспечения высокого коэффициента концентрирования биомассы и снижения энергетических затрат рекомендуется применять многостадийный процесс сбора P. purpureum, сочетающий первичное гравитационное осаждение и методы центрифугирования или сепарирования. Проведенные исследования могут служить основой для разработки практических рекомендаций по эффективному сбору микроводорослей в промышленных масштабах.

Об авторах

С. Ю. Горбунова
Институт биологии южных морей им. А.О. Ковалевского РАН
Россия

Светлана Юрьевна Горбунова - кандидат биологических наук, старший научный сотрудник отдела биотехнологий и фиторесурсов.

Севастополь


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



А. Б. Боровков
Институт биологии южных морей им. А.О. Ковалевского РАН
Россия

Боровков Андрей Борисович - кандидат биологических наук, заведующий отделом биотехнологий и фиторесурсов.

Севастополь


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Список литературы

1. Garzon-Sanabria A.J., Davis R.T., Nikolov Z.L. Harvesting Nannochloropsis oculata by inorganic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dosage, and media pH // Bioresour. Technol. 2012. V. 118. P. 418–424. https://doi.org/10.1016/j.biortech.2012.04.057.

2. Milledge J.J., Heaven S. A review of the harvesting of micro-algae for biofuel production // Rev. Environ. Sci. Bio/Technol. 2013. V. 12, No 2. P. 165–178. https://doi.org/10.1007/s11157-012-9301-z.

3. Rahman Md.M., Hosano N., Hosano H. Recovering microalgal bioresources: A review of cell disruption methods and extraction technologies // Molecules. 2022. V. 27, No 9. Art. 2786. https://doi.org/10.3390/molecules27092786.

4. Leite G.B., Abdelaziz A.E.M., Hallenbeck P.C. Algal biofuels: Challenges and opportunities // Bioresour. Technol. 2013. V. 145. P. 134–141. https://doi.org/10.1016/j.biortech.2013.02.007.

5. Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: A review // Renewable Sustainable Energy Rev. 2010. V. 14, No 1. P. 217–232. https://doi.org/10.1016/j.rser.2009.07.020.

6. Georgiana D.R., Mayfield S.P. Exploiting diversity and synthetic biology for the production of algal biofuels // Nature. 2012. V. 488, No 7411. P. 329–335. https://doi.org/10.1038/nature11479.

7. Grima E.M., Belarbi E.-H., Fernández F.G.A., Medina A.R., Chisti Y. Recovery of microalgal biomass and metabolites: Process options and economics // Biotechnol. Adv. 2013. V. 20, Nos 7–8. P. 491–515. https://doi.org/10.1016/S0734-9750(02)00050-2.

8. Fasaei F., Bitter J.H., Slegers P.M., van Boxtel A.J.B. Techno-economic evaluation of microalgae harvesting and dewatering systems // Algal Res. 2018. V. 31. P. 347–362. https://doi.org/10.1016/j.algal.2017.11.038.

9. Ogbonna C.N., Nwoba E.G. Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review // Renewable Sustainable Energy Rev. 2021. V. 139. Art. 110690. https://doi.org/10.1016/j.rser.2020.110690.

10. Barros A.I., Gonçalves A.L., Simões M., Pires J.C.M. Harvesting techniques applied to microalgae: A review // Renewable Sustainable Energy Rev. 2015. V. 41. P. 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037.

11. Muylaert K., Bastiaens L., Vandamme D., Gouveia L. 5 – Harvesting of microalgae: Overview of process options and their strengths and drawbacks // Gonzalez-Fernandez C., Muñoz R. (Eds.) Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products. Ser.: Woodhead Publishing Series in Energy. Cambridge, MA: Woodhead Publ., 2017. P. 113–132. https://doi.org/10.1016/B978-0-08-101023-5.00005-4.

12. Farooqui A., Tripathi G., Moheet K., Dubey P., Ahmad S., Husain A., Shamim A., Mahfooz S. Algal biomass: Potential renewable feedstock for bioenergy production // Srivastava M., Srivastava N., Singh R. (Eds.) Bioenergy Research: Integrative Solution for Existing Roadblock. Singapore: Springer, 2021. P. 85–113. https://doi.org/10.1007/978-981-16-1888-8_5.

13. Mathimani T., Mallick N. A comprehensive review on harvesting of microalgae for biodiesel – key challenges and future directions // Renewable Sustainable Energy Rev. 2018. V. 91. P. 1103–1120. https://doi.org/10.1016/j.rser.2018.04.083.

14. Greenwell H.C., Laurens L.M.L, Shields R.J., Lovitt R.W., Flynn K.J. Placing microalgae on the biofuels priority list: A review of the technological challenges // J. R. Soc. Interface. 2010. V. 7, No 46. P. 703–726. https://doi.org/10.1098/rsif.2009.0322.

15. Schenk P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B. Second generation biofuels: High efficiency microalgae for biodiesel production // BioEnergy Res. 2008. V. 1, No 1. P. 20–43. https://doi.org/10.1007/s12155-008-9008-8.

16. Gong Y., Jiang M. Biodiesel production with microalgae as feedstock: From strains to biodiesel // Biotechnol. Lett. 2011. V. 33, No 7. P. 1269–1284. https://doi.org/10.1007/s10529-011-0574-z.

17. Sharma K.K., Garg S., Li Y., Malekizadeh A., Schenk P.M. Critical analysis of current microalgae dewatering techniques // Biofuels. 2013. V. 4, No 4. P. 397–407. https://doi.org/10.4155/BFS.13.25.

18. Sinetova M.A., Kupriyanova E.V., Los D.A. Spirulina/Arthrospira/Limnospira–three names of the single organism // Foods. 2024. V. 13, No 17. Art. 2762. https://doi.org/10.3390/foods13172762.

19. Wan C., Alam Md.A., Zhao X.-Q., Zhang X.-Y., Guo S.-L., Ho S.-H., Chang J.-S., Bai F.-W. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies // Bioresour. Technol. 2015. V. 184. P. 251–257. https://doi.org/10.1016/j.biortech.2014.11.081.

20. Vandamme D., Foubert I., Meesschaert B., Muylaert K. Flocculation of microalgae using cationic starch // J. Appl. Phycol. 2010. V. 22, No 4. P. 525–530. https://doi.org/10.1007/s10811-009-9488-8.

21. Wyatt N.B., Gloe L.M., Brady P.V., Hewson J.C., Grillet A.M., Hankins M.G., Pohl P.I. Critical conditions for ferric chloride-induced flocculation of freshwater algae // Biotechnol. Bioeng. 2012. V. 109, No 2. P. 493–501. https://doi.org/10.1002/bit.23319.

22. Beach E.S., Eckelman M.J., Cui Z., Brentner L., Zimmerman J.B. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans // Bioresour. Technol. 2012. V. 121. P. 445–449. https://doi.org/10.1016/j.biortech.2012.06.012.

23. Yang Z., Jia S., Zhuo N., Yang W., Wang Y. Flocculation of copper(II) and tetracycline from water using a novel pHand temperature-responsive flocculants // Chemosphere. 2015. V. 141. P. 112–119. https://doi.org/10.1016/j.chemosphere.2015.06.050.

24. Vu H.P., Nguyen L.N., Vu M.T., Labeeuw L., Emmerton B., Commault A.S., Ralph P.J., Mahlia T.M.I., Nghiem L.D. Harvesting Porphyridium purpureum using polyacrylamide polymers and alkaline bases and their impact on biomass quality // Sci. Total Environ. 2021. V. 755, Pt. 1. Art. 142412. https://doi.org/10.1016/j.scitotenv.2020.142412.

25. Hou Y., Liu C., Liu Z., Han T., Hao N., Guo Z., Wang W., Chen S., Zhao L., Safavi M., Ji X., Chen F. A novel salt-bridge electroflocculation technology for harvesting microalgae // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 902524. https://doi.org/10.3389/fbioe.2022.902524.

26. Iasimone F., Seira J., Panico A., De Felice V., Pirozzi F., Steyer J.-P. Insights into bioflocculation of filamentous cyanobacteria, microalgae and their mixture for a low-cost biomass harvesting system // Environ. Res. 2021. V. 199. Art. 111359. https://doi.org/10.1016/j.envres.2021.111359.

27. Lananan F., Yunos F.H.M., Nasir N.M., Bakar N.S.A., Lam S.S., Jusoh A. Optimization of biomass harvesting of microalgae, Chlorella sp. utilizing auto-flocculating microalgae, Ankistrodesmus sp. as bio-flocculant // Int. Biodeterior. Biodegrad. 2016. V. 113. P. 391–396. https://doi.org/10.1016/j.ibiod.2016.04.022.

28. Кузнецова Т.А., Базарнова Ю.Г., Боргоякова А.С. Исследование влияния процесса автофлокуляции клеток микроводоросли Chlorella sorokiniana в аквакультуре на получение комплекса пигментов // Известия КГТУ. 2018. № 51. С. 69–80.

29. Pragya N., Pandey K.K., Sahoo P.K. A review on harvesting, oil extraction and biofuels production technologies from microalgae // Renewable Sustainable Energy Rev. 2013. V. 24. P. 159–171. https://doi.org/10.1016/j.rser.2013.03.034.

30. Enamala M.K., Enamala S., Chavali M., Donepudi J., Yadavalli R., Kolapalli B., Aradhyula T.V., Velpuri J., Kuppam C. Production of biofuels from microalgae – a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae // Renewable Sustainable Energy Rev. 2018. V. 94. P. 49–68. https://doi.org/10.1016/j.rser.2018.05.012.

31. Bajpai P. Third Generation Biofuels. Ser.: SpringerBriefs in Energy. Singapore: Springer, 2019. xv, 76 p. https://doi.org/10.1007/978-981-13-2378-2.

32. Soomro R.R., Ndikubwimana T., Zeng X., Lu Y., Lin L., Danquah M.K. Development of a two-stage microalgae dewatering process – a life cycle assessment approach // Front. Plant Sci. 2016. V. 7. Art. 113. https://doi.org/10.3389/fpls.2016.00113.

33. Wijffels R.H., Barbosa M.J. An outlook on microalgal biofuels // Science. 2010. V. 329, No 5993. P. 796–799. https://doi.org/10.1126/science.1189003.

34. Show K.-Y., Lee D.-J. Chapter 5 – Algal biomass harvesting // Pandey A., Lee D.-J., Chisti Y., Soccol C.R. (Eds.) Biofuels from Algae. Oxford: Elsevier, 2014. P. 85–110. https://doi.org/10.1016/B978-0-444-59558-4.00005-X.

35. Pittman J.K., Dean A.P., Osundeko O. The potential of sustainable algal biofuel production using wastewater resources // Bioresour. Technol. 2011. V. 102, No 1. P. 17–25. https://doi.org/10.1016/j.biortech.2010.06.035.

36. Li S., Hu T., Xu Y., Wang J., Chu R., Yin Z., Mo F., Zhu L. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives // Renew. Sustain. Energy Rev. 2020. V. 131. Art. 110005. https://doi.org/10.1016/j.rser.2020.110005.

37. Najjar Y.S.H., Abu-Shamleh A. Harvesting of microalgae by centrifugation for biodiesel production: A review // Algal Res. 2020. V. 51. Art. 102046. https://doi.org/10.1016/j.algal.2020.102046.

38. Vandamme D., Foubert I., Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production // Trends Biotechnol. 2013. V. 31, No 4. P. 233–239. https://doi.org/10.1016/j.tibtech.2012.12.005.

39. Chen L., Wang C., Wang W., Wei J. Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system // Bioresour. Technol. 2013. V. 133. P. 9–15. https://doi.org/10.1016/j.biortech.2013.01.071.

40. Subhadra B., Edwards M. An integrated renewable energy park approach for algal biofuel production in United States // Energy Policy. 2010. V. 38, No 9. P. 4897–4902. https://doi.org/10.1016/j.enpol.2010.04.036.

41. Rastogi R.P., Pandey A., Larroche C., Madamwar D. Algal green energy – R & D and technological perspectives for biodiesel production // Renewable Sustainable Energy Rev. 2017. V. 82, Pt. 3. P. 2946–2969. https://doi.org/10.1016/j.rser.2017.10.038.

42. Singh G., Patidar S.K. Microalgae harvesting techniques: A review // J. Environ. Manage. 2018. V. 217. P. 499–508. https://doi.org/10.1016/j.jenvman.2018.04.010.

43. Wu Z., Zhu Y., Huang W., Zhang C., Li T., Zhang Y., Li A. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium // Bioresour. Technol. 2012. V. 110. P. 496–502. https://doi.org/10.1016/j.biortech.2012.01.101.

44. Şirin S., Trobajo R., Ibanez C., Salvadó J. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation // J. Appl. Phycol. 2012. V. 24, No 5. P. 1067–1080. https://doi.org/10.1007/s10811-011-9736-6.

45. Wuang S.C., Khin M.C., Chua P.Q.D., Luo Y.D. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers // Algal Res. 2016. V. 15. P. 59–64. https://doi.org/10.1016/j.algal.2016.02.009.

46. Watanabe K., Imase M., Sasaki K., Ohmura N., Saiki H., Tanaka H. Composition of the sheath produced by the green alga Chlorella sorokiniana // Lett. Appl. Microbiol. 2006. V. 42, No 5. P. 538–543. https://doi.org/10.1111/j.1472-765X.2006.01886.x.

47. Salim S., Bosma R., Vermuë M.H., Wijffels R.H. Harvesting of microalgae by bio-flocculation // J. Appl. Phycol. 2011. V. 23, No 5. Р. 849–855. https://doi.org/10.1007/s10811-010-9591-x.

48. Sajjad A., Rizwan M., Mujtaba G., Rashid N. Chitosan as a flocculant: An approach to improve its solubility for efficient harvesting of microalgae // Korean Chem. Eng. Res. 2017. V. 55, No 4. P. 530–534. https://doi.org/10.9713/kcer.2017.55.4.530.

49. Rashid N., Rehman S.U., Han J.-I. Rapid harvesting of freshwater microalgae using chitosan // Process Biochem. 2013. V. 48, No 7. P. 1107–1110. https://doi.org/10.1016/j.procbio.2013.04.018.

50. Xu Y., Purton S., Baganz F. Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana // Bioresour. Technol. 2013. V. 129. P. 296–301. https://doi.org/10.1016/j.biortech.2012.11.068.

51. Farid M.S., Shariati A., Badakhshan A., Anvaripour B. Using nano-chitosan for harvesting microalga Nannochloropsis sp. // Bioresour. Technol. 2013. V. 131. P. 555–559. https://doi.org/10.1016/j.biortech.2013.01.058.

52. Pradana Y.S., Kusumastuti Y., Rahma F.N., Effendy N. Chitosan flocculation-sedimentation for harvesting selected microalgae species grown in monoculture and mixed cultures // Chem. Eng. Trans. 2017. V. 56. P. 1549–1554. https://doi.org/10.3303/CET1756259.

53. Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts // Biotechnol. Adv. 2011. V. 29, No 6. P. 686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015.

54. Spilling K., Seppälä J., Tamminen T. Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation // J. Appl. Phycol. 2011. V. 23, No 6. P. 959–966. https://doi.org/10.1007/s10811-010-9616-5.

55. Hadiyanto H., Widayat W., Christwardana M., Pratiwi M.E. The flocculation process of Chlorella sp. using chitosan as a bio-flocculant: Optimization of operating conditions by response surface methodology // Curr. Res. Green Sustain. Chem. 2022. V. 5. Art. 100291. https://doi.org/10.1016/j.crgsc.2022.100291.

56. Kavitha M.D., Kathiresan S., Bhattacharya S., Sarada R. Culture media optimization of Porphyridium purpureum: Production potential of biomass, total lipids, arachidonic, and eicosapentaenoic acid // J. Food Sci. Technol. 2016. V. 53, No 5. P. 2270–2278. https://doi.org/10.1007/s13197-016-2185-0.

57. Çakmak E.K., Ugurlu A. Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment // Algal Res. 2020. V. 50. Art. 101979. https://doi.org/10.1016/j.algal.2020.101979.

58. Li T., Xu J., Wang W., Chen Z., Li C., Wu H., Wu H., Xiang W. A novel three-step extraction strategy for high-value products from red algae Porphyridium purpureum // Foods. 2021. V. 10, No 9. Art. 2164. https://doi.org/10.3390/foods10092164.

59. Erbil G.Ç., Elp M., Durmaz Y. Phycoerythrin accumulation of Porphyridium cruentum culture at indoor tubular photobioreactor // Yuzuncu Yil University Journal of Agricultural Sciences. 2022. V. 32, No 1. P. 81–88. https://doi.org/10.29133/yyutbd.986286.

60. Nguyen A.Q., Mohammadi M., Alian M., Muralitharan G., Chauhan V.S., Balan V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques // Biotechnol. Adv. 2024. V. 77. Art. 108471. https://doi.org/10.1016/j.biotechadv.2024.108471.

61. Schoeters F., Spit J., Swinnen E., De Cuyper A., Vleugels R., Noyens I., Van Miert S. Pilot-scale cultivation of the red alga Porphyridium purpureum over a two-year period in a greenhouse // J. Appl. Phycol. 2023. V. 35, No 5. P. 2095–2109. https://doi.org/10.1007/s10811-023-03045-5.

62. Zhao Z., Muylaert K., Vankelecom I.F.J. Combining patterned membrane filtration and flocculation for economical microalgae harvesting // Water Res. 2021. V. 198. Art. 117181. https://doi.org/10.1016/j.watres.2021.117181.

63. Jeevanandam J., Danquah M.K. Chapter 9 – Dewatering and drying of algal cultures // Jacob-Lopes E., Maroneze M.M., Queiroz M.I., Zepka L.Q. (Eds.) Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds. Oxford: Acad. Press, 2020. P. 207–224. https://doi.org/10.1016/B978-0-12-818536-0.00009-9.

64. Markina Z.V., Orlova T.Yu., Vasyanovich Y.A., Vardavas A.I., Stivaktakis P.D., Vardavas C.I., Kokkinakis M.N., Rezaee R., Ozcagli E., Golokhvast K.S. Porphyridium purpureum microalga physiological and ultrastructural changes under copper intoxication // Toxicol. Rep. 2021. V. 8. P. 988–993. https://doi.org/10.1016/j.toxrep.2021.04.015.


Рецензия

Для цитирования:


Горбунова С.Ю., Боровков А.Б. Анализ и апробация методов отделения микроводорослей от культуральной среды, применимых для Porphyridium purpureum. Ученые записки Казанского университета. Серия Естественные науки. 2025;167(2):312-335. https://doi.org/10.26907/2542-064X.2025.2.312-335

For citation:


Gorbunova S.Yu., Borovkov A.B. Analysis and evaluation of methods used for harvesting microalgae from culture media and suitable for Porphyridium purpureum. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):312-335. (In Russ.) https://doi.org/10.26907/2542-064X.2025.2.312-335

Просмотров: 72


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)