Preview

Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki

Advanced search

Avian cell-free translation system based on the cell extract of Gallus gallus embryos

https://doi.org/10.26907/2542-064X.2025.2.297-311

Abstract

Cell-free translation systems are gaining increasingly widespread use, from both practical and fundamental standpoints. Their applications are diverse but typically revolve around preparative biosynthesis of proteins in cases where expression in living cells is either problematic or unfeasible. They also enable rapid evaluation of the effects produced by external components on the translation process. Existing cell-free systems have been derived from bacterial, yeast, plant, insect, mammalian, and human cells. However, no cell-free systems have been developed from avian cells, despite the ecological and economic significance of birds (in daily life, food production, light industry, agriculture, etc.). Such systems would be powerful biotechnological tools and bring considerable benefits for both poultry farming and fundamental research on the protein synthesis in birds. To address this gap, a cell-free translation system using the extracts from the cells of domestic chicken (Gallus gallus) embryos was developed. Following the sample preparation and mRNA selection, the cell-free biosynthesis of firefly luciferase was performed in a chemically supplemented cell extract.

About the Authors

A. G. Bikmullin
Kazan Federal University
Russian Federation

Aydar G. Bikmullin - Cand. Sci. (Biology), Senior Researcher, Laboratory of Structural Biology.

Kazan


Competing Interests:

The authors declare no conflicts of interest



E. A. Klochkova
FRC Kazan Scientific Center of the Russian Academy of Sciences
Russian Federation

Evelina A. Klochkova - Senior Researcher, Laboratory for Structural Analysis of Biomacromolecules.

Kazan


Competing Interests:

The authors declare no conflicts of interest



N. M. Alexandrova
FRC Kazan Scientific Center of the Russian Academy of Sciences
Russian Federation

Natalya M. Alexandrova - Cand. Sci. (Biology), Senior Researcher, Laboratory of Molecular Genetics and Microbiological Methods.

Kazan


Competing Interests:

The authors declare no conflicts of interest



K. S. Usachev
Kazan Federal University; FRC Kazan Scientific Center of the Russian Academy of Sciences
Russian Federation

Konstantin S. Usachev - Dr. Sci. (Physics and Mathematics), Head of the Laboratory for Structural Analysis of Biomacromolecules.

Kazan


Competing Interests:

The authors declare no conflicts of interest



References

1. Spirin A.S., Swartz J.R. (Eds.) Cell-Free Protein Synthesis: Methods and Protocols. Weinheim, Wiley-VCH, 2008. 262 p.

2. Chong S. Overview of cell-free protein synthesis: Historic landmarks, commercial systems, and expanding applications. Curr. Protoc. Mol. Biol., 2014, vol. 108, pp. 16.30.1–16.30.11. https://doi.org/10.1002/0471142727.mb1630s108.

3. Nevin D.E., Pratt J.M. A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides expressed from the T7 promoter. FEBS Lett., 1991, vol. 291, no. 2, pp. 259–263. https://doi.org/10.1016/0014-5793(91)81297-L.

4. Craig D., Howell M.T., Gibbs C.L. Hunt T., Jackson R.J. Plasmid cDNA-directed protein synthesis in a coupled eukaryotic in vitro transcription-translation system. Nucleic Acids Res., 1992, vol. 20, no. 19, pp. 4987–4995. https://doi.org/10.1093/nar/20.19.4987.

5. Tuckey C., Asahara H., Zhou Y., Chong S. Protein synthesis using a reconstituted cell-free system. Curr. Protoc. Mol. Biol., 2014, vol. 108, pp. 16.31.1–16.31.22. https://doi.org/10.1002/0471142727.mb1631s108.

6. Zamecnik P.C., Frantz I.D., Loftfield R.B., Stephenson M.L. Incorporation in vitro of radioactive carbon from carboxyl-labeled DL-alanine and glycine into proteins of normal and malignant rat livers. J. Biol. Chem., 1948, vol. 175, no. 1, pp. 299–314. https://doi.org/10.1016/S0021-9258(18)57260-4.

7. Smolskaya S., Logashina Y.A., Andreev Y.A. Escherichia coli extract-based cell-free expression system as an alternative for difficult-to-obtain protein biosynthesis. Int. J. Mol. Sci., 2020, vol. 21, no. 3, art. 928. https://doi.org/10.3390/ijms21030928.

8. Burgenson D., Gurramkonda C., Pilli M., Ge X., Andar A., Kostov Y., Tolosa L., Rao G. Rapid recombinant protein expression in cell-free extracts from human blood. Sci. Rep., 2018, vol. 8, no. 1, art. 9569. https://doi.org/10.1038/s41598-018-27846-8.

9. Brӧdel A.K., Sonnabend A., Kubick S. Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng., 2014, vol. 111, no. 1, pp. 25–36. https://doi.org/10.1002/bit.25013.

10. Stech M., Quast R.B., Sachse R., Schulze C., Wüstenhagen D.A., Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PloS One, 2014, vol. 9, no. 5, art. e96635. https://doi.org/10.1371/journal.pone.0096635.

11. Madin K., Sawasaki T., Ogasawara T., Endo Y. A highly efficient and robust protein synthesis system prepared from wheat embryos: Plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 2, pp. 559–564. https://doi.org/10.1073/pnas.97.2.559.

12. Stavnezer J., Huang R.C.C. Synthesis of a mouse immunoglobulin light chain in a rabbit reticulocyte cell-free system. Nat. New Biol., 1971, vol. 230, no. 14, pp. 172–176. https://doi.org/10.1038/newbio230172a0.

13. Mikami S., Masutani M., Sonenberg N., Yokoyama S., Imataka H. An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expression Purif., 2006, vol. 46, no. 2, pp. 348–357. https://doi.org/10.1016/j.pep.2005.09.021.

14. Gan R., Jewett M.C. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis. Biotechnol. J., 2014, vol. 9, no. 5, pp. 641–651. https://doi.org/10.1002/biot.201300545.

15. Klammt C., Löhr F., Schäfer B., Haase W., Dötsch V., Rüterjans H., Glaubitz C., Bernhard F. High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem., 2004, vol. 271, no. 3, pp. 568–580. https://doi.org/10.1111/j.1432-1033.2003.03959.x.

16. Kalmbach R., Chizhov I., Schumacher M.C., Friedrich T., Bamberg E., Engelhard M. Functional cell-free synthesis of a seven helix membrane protein: In situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol., 2007, vol. 371, no. 3, pp. 639–648. https://doi.org/10.1016/j.jmb.2007.05.087.

17. Garenne D., Haines M.C., Romantseva E.F., Freemont P., Strychalski E.A., Noireaux V. Cell-free gene expression. Nat. Rev. Methods Primers, 2021, vol. 1, no. 1, art. 49. https://doi.org/10.1038/s43586-021-00046-x.

18. Sato W., Rasmussen M., Deich C., Engelhart A.E., Adamala K.P. Expanding luciferase reporter systems for cell-free protein expression. Sci. Rep., 2022, vol. 12, no. 1, art. 11489. https://doi.org/10.1038/s41598-022-15624-6.

19. Thornton E.L., Paterson S.M., Stam M.J., Wood C.W., Laohakunakorn N., Regan L. Applications of cell free protein synthesis in protein design. Protein Sci., 2024, vol. 33, no. 9, art. e5148. https://doi.org/10.1002/pro.5148.

20. Maharjan A., Par J.-H. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol. Appl. Biochem., 2023, vol. 70, no. 6, pp. 2136–2149. https://doi.org/10.1002/bab.2514.

21. Brödel A.K., Sonnabend A., Roberts L.O., Stech M., Wüstenhagen D.A., Kubick S. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems. PLoS One, 2013, vol. 8, no. 12, art. e82234. https://doi.org/10.1371/journal.pone.0082234.

22. Arduengo M., Schenborn E., Hurst R. The role of cell-free rabbit reticulocyte expression systems in functional proteomics. In: Kudlicki W., Katzen F., Bennett R. (Eds.) Cell-Free Expression. Austin, TX, Landes Biosci., 2007, pp. 1–18.

23. Sword T.T., Abbas G.S.K., Bailey C.B. Cell-free protein synthesis for nonribosomal peptide synthetic biology. Front. Nat. Prod., 2024, vol. 3, art. 1353362. https://doi.org/10.3389/fntpr.2024.1353362.

24. Abreu R., Semedo-Lemsaddek T., Cunha E., Tavares L., Oliveira M. Antimicrobial drug resistance in poultry production: Current status and innovative strategies for bacterial control. Microorganisms, 2023, vol. 11, no. 4, art. 953. https://doi.org/10.3390/microorganisms11040953.

25. Rodrigues G., Santos L.S., Franco O.L. Antimicrobial peptides controlling resistant bacteria in animal production. Front. Microbiol., 2022, vol. 13, art. 874153. https://doi.org/10.3389/fmicb.2022.874153.

26. Nurullina L., Terrosu S., Myasnikov A.G., Jenner L.B., Yusupov M. Cryo-EM structure of the inactive ribosome complex accumulated in chick embryo cells in cold-stress conditions. FEBS Lett., 2024, vol. 598, no. 5, pp. 537–547. https://doi.org/10.1002/1873-3468.14831.

27. Usachev K.S., Golubev A.A., Aleksandrova N.M., Klochkova E.A., Bikmullin A.G., Validov Sh.Z., Isusupov M.M. A cell-free protein synthesis system based on Gallus gallus embryonic cells and a method of protein synthesis based on cell-free protein synthesis system in embryonic cells. Patent RF no. 2807690. Byull. FIPS, 2023, no. 33. (In Russian)

28. Brӧdel A.K., Wüstenhagen D.A., Kubick S. Cell-free protein synthesis systems derived from cultured mammalian cells. In: Owens R.J. (Ed.) Structural Proteomics: High-Throughput Methods. Ser.: Methods in Molecular Biology. Vol. 1261. New York, NY, Humana Press, 2015, pp. 129–140. https://doi.org/10.1007/978-1-4939-2230-7_7.

29. Pelham H.R.B., Jackson R.J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem., 1976, vol. 67, no. 1, pp. 247–256. https://doi.org/10.1111/j.1432-1033.1976.tb10656.x.

30. Fatkhullin B., Golubev A., Garaeva N., Validov S., Gabdulkhakov A., Yusupov M. Y98 mutation leads to the loss of RsfS anti-association activity in Staphylococcus aureus. Int. J. Mol. Sci., 2022, vol. 23, no. 18, art. 10931. https://doi.org/10.3390/ijms231810931.

31. Lintner N.G., McClure K.F., Petersen D., Londregan A.T., Piotrowski D.W., Wei L., Xiao J., Bolt M., Loria P.M., Maguire B., Geoghegan K.F., Huang A., Rolph T., Liras S., Doudna J.A., Dullea R.J., Cate J.H.D. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biol., 2017, vol. 15, no. 3, art. E2001882. https://doi.org/10.1371/journal.pbio.2001882.

32. Andreev D.E., Dmitriev S.E., Terenin I.M., Prassolov V.S., Merrick W.C., Shatsky I.N. Differential contribution of the m7G-cap to the 5ꞌ end-dependent translation initiation of mammalian mRNAs. Nucleic Acids Res., 2009, vol. 37, no. 18, pp. 6135–6147. https://doi.org/10.1093/nar/gkp665.

33. Lidsky P.V., Yuan J., Lashkevich K.A., Dmitriev S.E., Andino R. Monitoring integrated stress response in live Drosophila. bioRxiv (Preprint). 2023. https://doi.org/10.1101/2023.07.13.548942.

34. Panova E.A., Kleymenov D.A., Shcheblyakov D.V., Bykonia E.N., Mazunina E.P., Dzharullaeva A.S., Zolotar A.N., Derkaev A.A., Esmagambetov I.B., Sorokin I.I., Usachev E.V., Noskov A.N., Ivanov I.A., Zatsepin T.S., Dmitriev S.E., Gushchin V.A., Naroditsky B.S., Logunov D.Y., Gintsburg A.L. Singledomain antibody delivery using an mRNA platform protects against lethal doses of botulinum neurotoxin A. Front. Immunol., 2023, vol. 14, art. 1098302. https://doi.org/10.3389/fimmu.2023.1098302.

35. Golubev A. Structural and functional studies of S. aureus translation machinery. PhD thesis. Univ. of Strasbourg, 2021, pp. 79–93.


Review

For citations:


Bikmullin A.G., Klochkova E.A., Alexandrova N.M., Usachev K.S. Avian cell-free translation system based on the cell extract of Gallus gallus embryos. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):297-311. (In Russ.) https://doi.org/10.26907/2542-064X.2025.2.297-311

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)