Xymedon and its conjugate with L-ascorbic acid for treating experimentally induced liver fibrosis in rats
https://doi.org/10.26907/2542-064X.2025.2.276-296
Abstract
This study evaluates the antifibrotic properties of Xymedon, a pyrimidine derivative (1,2-dihydro-4,6-dimethyl-1-(2-hydroxyethyl)-pyrimidin-2-one), and its conjugate with L-ascorbic acid in a rat model of experimental liver fibrosis. Liver fibrosis was induced in female Wistar rats by oral administration of 5 % oil solution of CCl4 at a dose of 2 mL/kg twice weekly and 5 % ethanol in drinking water with constant access for 8 weeks. After discontinuing the administration of toxicants, the rats were treated with Xymedon at a dose of 0.24 mg/kg and its conjugate with L-ascorbic acid at an equimolar dose of 0.5 mg/kg for 2 or 4 weeks. Histological evaluation of the liver tissue was performed using hematoxylin– eosin and Van Gieson’s staining. Serum biochemical indicators of liver function were determined. Additionally, the cytokine profile of the liver tissue and serum was examined using the MagPix multiplex immunoassay, and liver COX-2 levels were measured by western blot analysis. The findings demonstrate that the treatment with the conjugate of Xymedon with L-ascorbic acid for 2 weeks significantly promoted fibrosis resolution by reducing the area of collagen fibers in the liver tissue of rats. This treatment also resulted in a more pronounced normalization of blood biochemical parameters, cytokine profile markers, and COX-2 levels compared to Xymedon alone and the untreated control group.
About the Authors
G. P. BelyaevRussian Federation
Competing Interests:
The authors declare no conflicts of interest
A. B. Vyshtakalyuk
Russian Federation
Competing Interests:
The authors declare no conflicts of interest
A. A. Parfenov
Russian Federation
Competing Interests:
The authors declare no conflicts of interest
I. V. Galyametdinova
Russian Federation
Competing Interests:
The authors declare no conflicts of interest
V. E. Semenov
Russian Federation
Competing Interests:
The authors declare no conflicts of interest
V. V. Zobov
Russian Federation
Competing Interests:
The authors declare no conflicts of interest
References
1. Zhang C.-Y., Liu S., Yang M. Treatment of liver fibrosis: Past, current, and future. World J. Hepatol., 2023, vol. 15, no. 6, pp. 755–774. https://doi.org/10.4254/wjh.v15.i6.755.
2. Pei Q., Yi Q., Tang L. Liver fibrosis resolution: From molecular mechanisms to therapeutic opportunities. Int. J. Mol. Sci., 2023, vol. 24, no. 11, art. 9671. https://doi.org/10.3390/ijms24119671.
3. Thiele M., Pose E., Juanola A., Mellinger J., Ginès P. Population screening for cirrhosis. Hepatol. Commun., 2024, vol. 8, no. 9, art. e0512. https://doi.org/10.1097/HC9.0000000000000512.
4. Hammerich L., Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol., 2023, vol. 20, no. 10, pp. 633–646. https://doi.org/10.1038/s41575-023-00807-x.
5. Akkız H., Gieseler R.K., Canbay A. Liver fibrosis: From basic science towards clinical progress, focusing on the central role of hepatic stellate cells. Int. J. Mol. Sci., 2024, vol. 25, no. 14, art. 7873. https://doi.org/10.3390/ijms25147873.
6. Faccioli L.A., Dias M.L., Paranhos B.A., Goldenberg R.C.D.S. Liver cirrhosis: An overview of experimental models in rodents. Life Sci., 2022, vol. 301, art. 120615. https://doi.org/10.1016/j.lfs.2022.120615.
7. Lee Y.-S., Seki E. In vivo and in vitro models to study liver fibrosis: Mechanisms and limitations. Cell. Mol. Gastroenterol. Hepatol., 2023, vol. 16, no. 3, pp. 355–367. https://doi.org/10.1016/j.jcmgh.2023.05.010.
8. Natarajan R., Samy H.N.A., Sivaperuman A., Subramani A. Structure-activity relationships of pyrimidine derivatives and their biological activity – a review. Med. Chem., 2023, vol. 19, no. 1, pp. 10–30. https://doi.org/10.2174/1573406418666220509100356.
9. Belyaev G.P., Vyshtakalyuk A.B., Parfenov A.A., Galyametdinova I.V., Semenov V.E., Zobov V.V. Antifibrotic effect of pyrimidine derivatives of Xymedon and its conjugate with L-ascorbic acid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2023, vol. 165, no. 2, pp. 175–189. https://doi.org/10.26907/2542-064X.2023.2.175-189. (In Russian)
10. Reznik V.S., Pashkurov N.G. Reactions of pyrimidinols and pyrimidinethiols with 2-chloroethanol and with 2-chloro-1-propanol. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, vol. 15, no. 9, pp. 1554–1557. https://doi.org/10.1007/BF00848915.
11. Vyshtakalyuk A.B., Semenov V.E., Zobov V.V., Galyametdinova I.V., Gumarova L.F., Parfenov A.A., Nazarov N.G., Lenina O.A., Kondrashova S.A., Latypov Sh.K., Cherepnev G.V., Shashyn M.S., Reznic V.S. Synthesis and primary evaluation of the hepatoprotective properties of novel pyrimidine derivatives. Russ. J. Bioorg. Chem., 2017, vol. 43, no. 5, pp. 604–611. https://doi.org/10.1134/S106816201704015X.
12. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv [Guidelines for Preclinical Studies of Drugs]. Pt. 2. Moscow, Grif i K, 2012. 536 p. (In Russian)
13. Sergazy S., Shulgau Z., Kamyshanskiy Y., Zhumadilov Z., Krivyh E., Gulyayev A., Aljofan M. Blueberry and cranberry extracts mitigate CCL4-induced liver damage, suppressing liver fibrosis, inflammation and oxidative stress. Heliyon, 2023, vol. 9, no. 4, art. e15370. https://doi.org/10.1016/j.heliyon.2023.e15370.
14. Narkevich A.N., Vinogradov K.A., Grjibovski A.M. Multiple comparisons in biomedical research: The problem and its solutions. Ekol. Chel., 2020, no. 10, pp. 55–64. https://doi.org/10.33396/1728-0869-2020-10-55-64. (In Russian)
15. Li M.-m., Zhou Y., Zuo L., Nie D., Li X.-a. Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice. Nutrition, 2021, vol. 81, art. 110959. https://doi.org/10.1016/j.nut.2020.110959.
16. Yang H., Xuefeng Y., Shandong W., Jianhua X. COX-2 in liver fibrosis. Clin. Chim. Acta, 2020, vol. 506, pp. 196–203. https://doi.org/10.1016/j.cca.2020.03.024.
17. Gilgenkrantz H., Sayegh R.A., Lotersztajn S. Immunoregulation of liver fibrosis: New opportunities for antifibrotic therapy. Annu. Rev. Pharmacol. Toxicol., 2025, vol. 65, pp. 281–299. https://doi.org/10.1146/annurev-pharmtox-020524-012013.
18. Liu C., Li S., Zhang C., Jin C.-H. Recent advances in research on active compounds against hepatic fibrosis. Curr. Med. Chem., 2024, vol. 31, no. 18, pp. 2571–2628. https://doi.org/10.2174/0929867331666230727102016.
19. Gu Y.-F., Zhang Y., Yue F.-l., Li S.-t., Zhang Z.-q., Li J., Bai X. Synthesis of novel 2-(pyridin-2-yl) pyrimidine derivatives and study of their anti-fibrosis activity. Molecules, 2020, vol. 25, no. 22, art. 5226. https://doi.org/10.3390/molecules25225226.
20. Ghobrial D.K., El-Nikhely N., Sheta E., Ragab H.M., Rostom S.A.F., Saeed H., Wahid A. The role of pyrazolo [3, 4-d] pyrimidine-based kinase inhibitors in the attenuation of CCl4-induced liver fibrosis in rats. Antioxidants, 2023, vol. 12, no. 3, art. 637. https://doi.org/10.3390/antiox12030637.
21. Jiang M., Huang C., Wu Q., Su Y., Wang X., Xuan Z., Wang Y., Xu F., Ge C. Sini San ameliorates CCl4-induced liver fibrosis in mice by inhibiting AKT-mediated hepatocyte apoptosis. J. Ethnopharmacol., 2023, vol. 303, art. 115965. https://doi.org/10.1016/j.jep.2022.115965.
22. Zhang L., Liu C., Yin L., Huang C., Fan S. Mangiferin relieves CCl4-induced liver fibrosis in mice. Sci. Rep., 2023, vol. 13, no. 1, art. 4172. https://doi.org/10.1038/s41598-023-30582-3.
23. Bai Y., Liang S., Zhou Y., Zhou B. Transcriptomic analysis reveals pharmacological mechanisms mediating efficacy of Yangyinghuoxue Decoction in CCl4-induced hepatic fibrosis in rats. Front. Pharmacol., 2024, vol. 15, art. 1364023. https://doi.org/10.3389/fphar.2024.1364023.
24. Peugnet-González I., Martínez-Hernández S.L., Ávila-Blanco M.E., Hernández-Marín D.A., Macias-Pérez J.R., Aldaba-Muruato L.R., Quezada-Tristán T., Sosa-Ramírez J., Villa-Jaimes G.S., Ventura-Juárez J., Muñoz-Ortega M., Ibarra-Martínez D. Hepatoprotective and antifibrotic activity of watercress extract in a model of CCl4-induced liver fibrosis in Wistar rats. J. Funct. Foods, 2023, vol. 109, art. 105760. https://doi.org/10.1016/j.jff.2023.105760.
25. Thomes P.G., Rasineni K., Yang L., Donohue T.M., Jr., Kubik J.L., McNiven M.A., Casey C.A. Ethanol withdrawal mitigates fatty liver by normalizing lipid catabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, vol. 316, no. 4, pp. G509–G518. https://doi.org/10.1152/ajpgi.00376.2018.
26. Hsieh H.-G., Huang H.-C., Lee F.-Y., Chan C.-Y., Lee J.-Y., Lee S.-D. Kinetics of cytokine expression in cirrhotic rats. J. Chin. Med. Assoc., 2011, vol. 74, no. 9, pp. 385–393. https://doi.org/10.1016/j.jcma.2011.08.002.
27. Amer M.A., Othman A.I., El-Missiry M.A., Farag A.A., Amer M.E. Proanthocyanidins attenuated liver damage and suppressed fibrosis in CCl4-treated rats. Environ. Sci. Pollut. Res., 2022, vol. 29, no. 60, pp. 91127–91138. https://doi.org/10.1007/s11356-022-22051-7.
28. Rikans L.E., DeCicco L.A., Hornbrook K.R., Yamano T. Effect of age and carbon tetrachloride on cytokine concentrations in rat liver. Mech. Ageing Dev., 1999, vol. 108, no. 2, pp. 173–182. https://doi.org/10.1016/S0047-6374(99)00012-3.
29. Ahmed O., Robinson M.W., O’Farrelly C. Inflammatory processes in the liver: Divergent roles in homeostasis and pathology. Cell. Mol. Immunol., 2021, vol. 18, no. 6, pp. 1375–1386. https://doi.org/10.1038/s41423-021-00639-2.
30. Campana L., Esser H., Huch M., Forbes S. Liver regeneration and inflammation: From fundamental science to clinical applications. Nat. Rev. Mol. Cell Biol., 2021, vol. 22, no. 9, pp. 608–624. https://doi.org/10.1038/s41580-021-00373-7.
31. Robinson M.W., Harmon C., O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol., 2016, vol. 13, no. 3, pp. 267–276. https://doi.org/10.1038/cmi.2016.3.
32. Roehlen N., Crouchet E., Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, vol. 9, no. 4, art. 875. https://doi.org/10.3390/cells9040875.
33. Zuñiga-Aguilar E., Ramírez-Fernández O. Fibrosis and hepatic regeneration mechanism. Transl. Gastroenterol. Hepatol., 2022, vol. 7, art. 9. https://doi.org/10.21037/tgh.2020.02.21.
34. Luangmonkong T., Parichatikanond W., Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem. Pharmacol., 2023, vol. 215, art. 115740. https://doi.org/10.1016/j.bcp.2023.115740.
35. Seitz T., Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int., 2021, vol. 41, no. 6, pp. 1201–1215. https://doi.org/10.1111/liv.14863.
36. Slabnov Yu.D., Cherepnev G.V., Karimova F.G., Garaev R.S. Effect of pyrimidine derivatives on adenyl-ate cyclase system of immunocompetent cell regulation in vitro. Bull. Exp. Biol. Med., 1998, vol. 125, no. 6, pp. 588–590. https://doi.org/10.1007/bf02445248.
37. Beavo J.A., Brunton L.L. Cyclic nucleotide research – still expanding after half a century. Nat. Rev. Mol. Cell Biol., 2002, vol. 3, no. 9, pp. 710–717. https://doi.org/10.1038/nrm911.
38. Wahlang B., McClain C., Barve S., Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell. Signalling, 2018, vol. 49, pp. 105–115. https://doi.org/10.1016/j.cellsig.2018.06.005.
39. Parfenov A.A., Vyshtakalyuk A.B., Galyametdinova I.V., Semenov V.E., Zobov V.V. Anti-apoptosis mechanism of the hepatoprotective effect of pyrimidine derivatives in in vivo studies. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 2, pp. 231–248. https://doi:10.26907/2542-064X.2022.2.231-248. (In Russian)
40. Belyaev G.P., Vyshtakalyuk A.B., Parfenov A.A., Galyametdinova I.V., Semenov V.E., Zobov V.V. Hepatoprotective effect of Xymedon and its conjugate with L-ascorbic acid during poisoning of mice with a semilethal dose of Paracetamol. Biomed. Chem.: Res. Methods, 2024, vol. 7, no. 4, art. e00249. https://doi.org/10.18097/BMCRM00249. (In Russian)
41. Vyshtakalyuk A.B., Semenov V.E., Sudakov I.A., Bushmeleva K.N., Gumarova L.F., Parfenov A.A., Nazarov N.G., Galyametdinova I.V., Zobov V.V. Xymedon conjugate with biogenic acids. Antioxidant properties of a conjugate of Xymedon with L-ascorbic acid. Russ. Chem. Bull., 2018, vol. 67, no. 4, pp. 705–711. https://doi.org/10.1007/s11172-018-2126-3.
42. Rivas C.I., Zúñiga F.A., Salas-Burgos A., Mardones L., Ormazabal V., Vera J.C. Vitamin C transporters. J. Physiol. Biochem., 2008, vol. 64, no. 4, pp. 357–375. https://doi.org/10.1007/BF03174092.
43. Bashandy S.A., AlWasel S.H. Carbon tetrachloride-induced hepatotoxicity and nephrotoxicity in rats: Protective role of vitamin C. J. Pharmacol. Toxicol., 2011, vol. 6, no. 3, pp. 283–292. https://doi.org/10.3923/jpt.2011.283.292.
44. Kim J.-H., Jeong Y.-J., Hong J.-M., Kim H.-R., Kang J.S., Lee W.J., Hwang Y.-i. Chronic vitamin C insufficiency aggravated thioacetamide-induced liver fibrosis in gulo-knockout mice. Free Radical Biol. Med., 2014, vol. 67, pp. 81–90. https://doi.org/10.1016/j.freeradbiomed.2013.10.813.
45. Weiskirchen R. Hepatoprotective and anti-fibrotic agents: It’s time to take the next step. Front. Pharmacol., 2016, vol. 6, art. 303. https://doi.org/10.3389/fphar.2015.00303.
46. Soylu A.R., Aydogdu N., Basaran U.N., Altaner S., Tarcin O., Gedik N., Umit H., Tezel A., Dokmeci G., Baloglu H., Ture M., Kutlu K., Kaymak K. Antioxidants vitamin E and C attenuate hepatic fibrosis in biliary-obstructed rats. World J. Gastroenterol., 2006, vol. 12, no. 42, pp. 6835–6841. https://doi.org/10.3748/wjg.v12.i42.6835.
47. Abhilash P.A., Harikrishnan R., Indira M. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs. Free Radical Res., 2012, vol. 46, no. 2, pp. 204–213. https://doi.org/10.3109/10715762.2011.647691.
Review
For citations:
Belyaev G.P., Vyshtakalyuk A.B., Parfenov A.A., Galyametdinova I.V., Semenov V.E., Zobov V.V. Xymedon and its conjugate with L-ascorbic acid for treating experimentally induced liver fibrosis in rats. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):276-296. (In Russ.) https://doi.org/10.26907/2542-064X.2025.2.276-296