Complexation of trivalent lanthanide cations with amino(O-alkyl)methylenephosphonic acids as the closest organophosphorus analogues of nitrilotriacetic acid
https://doi.org/10.26907/2542-064X.2025.2.223-241
Abstract
The complexation of new complexones, analogues of nitrilotriacetic (H3NTA) and nitrilotrimethylenephosphonic (H6NTP) acids containing monobasic (O-alkyl)methylenephosphonic fragments as donor groups, with trivalent cations of lanthanides was studied. The stability and deprotonation constants of 1:1 complexes and the fractional distribution of complex forms were determined using pH-metric titration in combination with mathematical modeling. The complexation properties of N-[(O-butyl)hydroxyphosphorylmethyl]iminodiacetic acid were compared with those of H3NTA based on the linear free-energy relationships.
About the Authors
A. R. GarifzyanovRussian Federation
Airat R. Garifzyanov - Cand. Sci. (Chemistry), Associate Professor, Department of Analytical Chemistry, A.M. Butlerov Institute of Chemistry.
Kazan
Competing Interests:
The authors declare no conflicts of interest
I. I. Mirzayanov
Russian Federation
Ildar I. Mirzayanov - Cand. Sci. (Chemistry), Associate Professor, Department of Analytical Chemistry, Certification and Quality Management, Institute of Petroleum, Chemistry and Nanotechnologies.
Kazan
Competing Interests:
The authors declare no conflicts of interest
I. D. Shurygin
Russian Federation
Igor D. Shurygin - Postgraduate Student, Department of Analytical Chemistry, A.M. Butlerov Institute of Chemistry.
Kazan
Competing Interests:
The authors declare no conflicts of interest
E. O. Chibirev
Russian Federation
Egor O. Chibirev - Assistant Professor, Department of Analytical Chemistry, A.M. Butlerov Institute of Chemistry.
Kazan
Competing Interests:
The authors declare no conflicts of interest
F. V. Devyatov
Russian Federation
Fedor V. Devyatov - Dr. Sci. (Chemistry), Full Professor, Department of Inorganic Chemistry.
Kazan
Competing Interests:
The authors declare no conflicts of interest
References
1. Schwarzenbach G., Biedermann W. Komplexone VII. Titration von Metallen mit Nitrilotriessigsäure H3X. Endpunktsindikation durch pH-Effekte. Helv. Chim. Acta, 1948, Bd. 31, H. 2, S. 331–340. https://doi.org/10.1002/hlca.19480310204. (In German)
2. Kornev V.I., Buldakova N.S. Protolytic and coordination equilibria in aqueous solutions of nickel(II) complexonates. Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 398–402. https://doi.org/10.1134/S0036023615030109.
3. Pyreu D.F., Gridchin S.N. Formation of mixed-ligand complexes of metals(II) with monoamine complexones and amino acids in solution. Russ. J. Phys. Chem. A, 2018, vol. 92, no. 5, pp. 909–917. https://doi.org/10.1134/S0036024418050254.
4. Pyreu D.F., Gruzdev M.S., Kumeev R.S. Formation of mixed-ligand complexes of mercury(II) with monoand diamine complexone ligands in aqueous solution. Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, pp. 401–406. https://doi.org/10.1134/S0036024419030154.
5. Pyreu D.F., Alekseeva E.S., Simagina Т.А., Gruzdev M.S., Kumeev R.S., Gridchin S.N. Mixed-ligand complexation of zinc and cobalt(II) complexonates with amino acids in an aqueous solution. Russ. J. Inorg. Chem., 2018, vol. 63, no. 2, pp. 180–190. https://doi.org/10.1134/S0036023618020183.
6. De Stefano C., Foti C., Giuffrè O., Milea D. Complexation of Hg2+, CH3Hg+, Sn2+ and (CH3)2Sn2+ with phosphonic NTA derivatives. New J. Chem., 2016, vol. 40, no. 2, pp. 1443–1453. https://doi.org/10.1039/C5NJ02531A.
7. Lytkin A.I., Chernikov V.V., Krutova O.N., Volkov A.V., Krutova E.D. Thermodynamics of the dissolution of nitrilotrimethylphosphonic acid in water. Russ. J. Phys. Chem. A, 2018, vol. 92, no. 12, pp. 2485–2487. https://doi.org/10.1134/S0036024418120282.
8. Pyreu D., Gridchin S. Thermodynamics of mixed ligand complex formation of metal(II) iminodiacetates and nitrilotriacetates with dipyridyl and phenanthroline in solution. J. Therm. Anal. Calorim., 2020, vol. 139, no. 2, pp. 1435–1441. https://doi.org/10.1007/s10973-019-08453-9.
9. Cordaro M., Foti C., Giacobello F., Giuffrè O., Sammartano S. Phosphonic derivatives of nitrilotriacetic acid as sequestering agents for Ca2+ in aqueous solution: A speciation study for application in natural waters. ACS Earth Space Chem., 2019, vol. 3, no. 9, pp. 1942–1954. https://doi.org/10.1021/acsearthspacechem.9b00183.
10. Alabdulla G.F., Kornev V.I. Heteropolynuclear mixed-ligand ethylenediaminetetraacetates of cobalt(II) and nickel(II) in aqueous solutions of nitrilotriacetic acid. Khim. Fiz. Mezosk., 2016, vol. 18, no. 2, pp. 272–280. (In Russian)
11. Shilov V.P., Fedoseev A.M., Gogolev A.V. Reaction of Np(VI) with nitrilotriacetic acid in perchloric acid solutions. Radiochemistry, 2017, vol. 59, no. 3, pp. 229–232. https://doi.org/10.1134/S1066362217030031.
12. Shankar V., Singh D., Verma S., Krishna V. Mixed metal mixed ligand complexation equilibria of transition metal ions involving nitrilotriacetic acid (NTA) and L-2-amino-3-methyl butanoic acid (valine). Natl. Acad. Sci. Lett., 2016, vol. 39, no. 3, pp. 185–189. https://doi.org/10.1007/s40009-016-0432-6.
13. Kozlovskii E.V., Aleksandrova S.А., Chesnokova L.N., Pyreu D.F. Application of correlation analysis to description of stability of complex compounds of lanthanoid ions with H3Nta and H6Ntph in aqueous solution. Russ. J. Gen. Chem., 2010, vol. 80, no. 7, pp. 1232–1235. https://doi.org/10.1134/S1070363210070029.
14. Voskresenskaya О.O., Skorik N.A., Stepanova N.V. Thermodynamic and kinetic stability of cerium(IV) complexes with a series of aminopolyacetic acids. Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1747–1756. https://doi.org/10.1134/S1070427216110033.
15. Kozlovskii E.V., Pyreu D.F., Khochenkova T.B. Thermochemical study of mixed-ligand complex formation in the system M2+–Nta3––En (M = Ni, Cu, Zn, or Cd) in aqueous solution. Russ. J. Inorg. Chem., 2008, vol. 53, no. 7, pp. 1158–1161. https://doi.org/10.1134/S0036023608070309.
16. Kozlovskii E.V., Aleksandrova S.A., Chesnokova L.N. A potentiometric study of lanthanides(III) complexing by nitrilotrimethylenephosphonic acid in an aqueous solution. Russ. J. Inorg. Chem., 2002, vol. 47, no. 9, pp. 1434–1436.
17. Somov N.V., Chausov F.F., Zakirova R.M., Petrov V.G., Shumilova M.A. Crystal structure of tetraand pentasodium salts of nitrilotris(methylenephosphonic acid). Russ. J. Inorg. Chem., 2018, vol. 63, no. 1, pp. 40–47. https://doi.org/10.1134/S0036023618010199.
18. Somov N.V., Chausov F.F., Lomova N.V., Zakirova R.M., Petrov V.G., Zhirov D.K., Shumilova M.A. Yttrium coordination compounds with nitrilotris(methylenephosphonic acid). Russ. J. Coord. Chem., 2019, vol. 45, no. 5, pp. 361–370. https://doi.org/10.1134/S1070328419030096.
19. Somov N.V., Chausov F.F., Zakirova R.M., Fedotova I.V. Synthesis, structure, and properties of nickel complexes with nitrilotris(methylenephosphonic acid) [Ni(H2O)3N(CH2PO3H)3] and Na4[Ni(H2O)N(CH2PO3)3]∙11H2O. Crystallogr. Rep., 2016, vol. 61, no. 2, pp. 216–224. https://doi.org/10.1134/S1063774516020243.
20. Somov N.V., Chausov F.F., Zakirova R.M., Petrov V.G., Shumilova M.A., Alexandrov V.A. Synthesis and structure of bis-hexaaquasodium bis-nitrilotris(methylenephosphonato)decaaquamonohydro-hexasodiumlanthanate trihydrate [Na(H2O)6]2[LaNa6H(H2O)10{N(CH2PO3)3}2]·3H2O. Russ. J. Coord. Chem., 2017, vol. 43, no. 6, pp. 373–379. https://doi.org/10.1134/S1070328417060082.
21. Somov N.V., Chausov F.F., Zakirova R.M. Synthesis and structure of cesium complexes of nitrilotris(methylenephosphonic) acid [Cs-μ6-NH(CH2PO3)3H4] and [Cs2-μ10-NH(CH2PO3H)3]·H2O. Crystallogr. Rep., 2017, vol. 62, no. 4, pp. 572–579. https://doi.org/10.1134/S1063774517040241.
22. Somov N.V., Chausov F.F., Zakirova R.M., Lomova N.V., Gil’mutdinov F.Z., Shabanova I.N., Petrov V.G., Shumilova M.A., Zhirov D.K. Dihydronitrilotris(methylenephosphonato)dimercury(II) mercury(I) [(HgI2)HgIIN(CH2PO3)3H2]: Synthesis and structure. Russ. J. Coord. Chem., 2018, vol. 44, no. 2, pp. 109–116. https://doi.org/10.1134/S1070328418020100.
23. Chausov F.F., Somov N.V., Lomova N.V., Shabanova I.N., Zakirova R.M., Petrov V.G., Shumilova M.A. Electronic structure and nature of the chemical bonds of a transition metal with a non-innocent ligand in coordination complex Na3[Mo(NO)(NH2O){N(CH2PO3)3H}]⋅8H2O. Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 7, pp. 892–894. https://doi.org/10.3103/S1062873818070146.
24. Wang J., Zhang X.D., Zhang Y., Jia W.G., Liu Zh.R. Coordinate structures of PrIII, GdIII, TmIII, and YbIII complexes with nitrilotriacetic acids. J. Struct. Chem., 2004, vol. 45, no. 1, pp. 114–123. https://doi.org/10.1023/B:JORY.0000041509.59005.d6.
25. Oshchepkov M.S., Rudakova G.Ya., Tkachenko S.V., Larchenko V.E., Popov K.I., Tusheva M.A. Recent state-of-the-art of antiscalant-driven scale inhibition theory (review). Therm. Eng., 2021, vol. 68, no. 5, pp. 370–380. https://doi.org/10.1134/S0040601521040054.
26. Popov K.I., Kovaleva N.E., Rudakova G.Ya., Kombarova S.P., Larchenko V.E. Recent state-of-the-art of biodegradable scale inhibitors for cooling-water treatment applications (review). Therm. Eng., 2016, vol. 63, no. 2, pp. 122–129. https://doi.org/10.1134/S0040601516010092.
27. Luchini C., Leguay S., Aupiais J., Cannes C., Le Naour C. Complexation of protactinium(V) with nitrilotriacetic acid: A study at the tracer scale. New J. Chem., 2018, vol. 42, no. 10, pp. 7789–7795. https://doi.org/10.1039/C7NJ04683A.
28. Wang S.-Y., Dong X., Chen J.-F. Zhou Z.-H. Iron molybdenum nitrilotriacetate and iminodiacetate-spectroscopy, structural characterization and CO2 adsorption. New J. Chem., 2018, vol. 42, no. 23, pp. 18526–18532. https://doi.org/10.1039/C8NJ03475C.
29. Erokhina E.V., Galashina V.N., Dymnikova N.S., Moryganov A.P. Synthesis of copper-silver bicomponent nanoparticles in the presence of nitrilotrimethylenephosphonic acid. Russ. J. Gen. Chem., 2018, vol. 88, no. 9, pp. 1951–1957. https://doi.org/10.1134/S1070363218090359.
30. Kropacheva T.N., Antonova A.S., Kornev V.I. Organophosphonate-functionalized nanosized magnetic iron oxides as sorbents for heavy metal cations. Mendeleev Commun., 2019, vol. 29, no. 3, pp. 358–360. https://doi.org/10.1016/j.mencom.2019.05.040.
31. Shevchenko G.P., Zhuravkov V.A., Tret’yak E.V., Novikov A.G., Korolik O.V. Synthesis and characterization of silver hydrosols in the presence of carboxyalkylated amine complexones. Russ. J. Inorg. Chem., 2018, vol. 63, no. 1, pp. 16–21. https://doi.org/10.1134/S0036023618010163.
32. Ekebas E., Cetin A., Önal A.M., Esenturk E.N. Magnesium substituted cobalt spinel nanostructures for electrocatalytic water oxidation. J. Appl. Electrochem., 2019, vol. 49, no. 3, pp. 315–325. https://doi.org/10.1007/s10800-018-01285-9.
33. Mendes R.F., Antunes M.M., Silva P., Barbosa P., Figueiredo F., Linden A., Rocha J., Valente A.A., Almeida Paz F.A. A lamellar coordination polymer with remarkable catalytic activity. Chem. – Eur. J., 2016, vol. 22, no. 37, pp. 13136–13146. https://doi.org/10.1002/chem.201602157.
34. Garifzyanov A.R., Shurygin I.D., Cherkasov R.A. Complexing properties of organophosphorus analogs of nitrilotriacetic acid: Aminotris(O-alkyl methylenephosphonic acids). Russ. J. Gen. Chem., 2018, vol. 88, no. 9, pp. 1860–1866. https://doi.org/10.1134/S1070363218090165.
35. Garifzyanov A.R., Shurygin I.D., Mirzayanov I.I., Devyatov F.V. Synthesis, acid-base, and complexing properties of ethylenediaminetetra(O-alkyl)methylenephosphonic acids – the closest organophosphorus analogs of ethylenediaminetetraacetic acid. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2022, vol. 164, no. 1, pp. 5–21. https://doi.org/10.26907/2542-064X.2022.1.5-21. (In Russian)
36. Shurygin I.D., Garifzyanov A.R., Cherkasov R.A. Ivshin K.A., Kataeva O.N. Synthesis, acid-base and complexing properties of N,N,N′,N′-tetrakis(O-butylhydroxyphosphorylmethyl)-1,2-diaminoethane. Russ. J. Gen. Chem., 2017, vol. 87, no. 9, pp. 2089–2092. https://doi.org/10.1134/S1070363217090274.
37. Mirzayanov I.I., Garifzyanov A.R., Devyatov F.V. Acid-base and complexing properties of 2,2′-{[(diisopropoxyphosphoryl)methyl]azanediyl}diacetic acid. Russ. J. Gen. Chem., 2021, vol. 91, no. 10, pp. 2045–2051. https://doi.org/10.1134/S1070363221100182.
38. Shurygin I.D., Garifzyanov A.R., Cherkasov R.A. Synthesis, acid‒base properties, and complexing properties of N,N-bis[butoxy(hydroxy)phosphinoylmethyl]glycine. Russ. J. Gen. Chem., 2017, vol. 87, no. 8, pp. 1882–1883. https://doi.org/10.1134/S1070363217080394.
39. Sal’nikov Y.I., Glebov A.N. Devyatov F.V. Poliyadernye kompleksy v rastvorakh [Polynuclear Complexes in Solutions]. Kazan, Izd. Kazan. Univ., 1989. 288 p. (In Russian)
40. Bogatyrev О.V., Yamaltdinova А.F., Devyatov F.V. Complexation of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) and manganese(II) in aqueous solution. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 1, pp. 44–54. (In Russian)
41. Musin D.R., Rubanov A.V., Devyatov F.V. Acid-base properties of the aqueous 1-hydroxyethylidenediphosphonic acid (HEDPA). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2011, vol. 153, no. 3, pp. 40–47. (In Russian)
42. Kornev V.I., Alabdullah G.F., Kropacheva T.N., Batueva E.V. Heteropolynuclear cobalt(II) and nickel(II) ethylenediaminetetraacetates in aqueous solutions of aminoethanoic acid. Russ. J. Inorg. Chem., 2016, vol. 61, no. 5, pp. 660–665. https://doi.org/10.1134/S0036023616050107.
43. Devyatov F.V., Bogatyrev O.V., Ignat’eva K.A. Formation of homoand heteronuclear complexes of 1-hydroxyethylidene-1,1-diphosphonic acid with MnII and FeIII in aqueous solutions. Russ. Chem. Bull., 2018, vol. 67, no. 8, pp. 1369–1375. https://doi.org/10.1007/s11172-018-2226-0.
44. Devyatov F.V., Musin D.R. Study of homoand heteronuclear complex formation in 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP)–erbium(III) and HEDP–erbium(III)–calcium(II) systems in an aqueous solution. Russ. Chem. Bull., 2015, vol. 64, no. 8, pp. 1866–1870. https://doi.org/10.1007/s11172-015-1085-1.
45. Kornev V.I., Semenova M.G. Nickel(II) complexes with 2-hydroxyethyliminodioacetic acid in aqueous solutions of dicarboxylic acids. Russ. J. Inorg. Chem., 2012, vol. 57, no. 4, pp. 616–621. https://doi.org/10.1134/S0036023612040146.
46. Chesnokova L.N. Potentiometric study of complexation between lanthanide ions (H1) and nitriloacetic and nitrilotrimethylenephosphonic acids in water solution. Extended Abstract of Cand. Sci. (Chemistry) Diss. Ivanovo, 2003. 16 p. (In Russian)
47. Anderegg G. Critical survey of stability constants of NTA complexes. Pure Appl. Chem., 1982, vol. 54, no. 12, pp. 2693–2758. https://doi.org/10.1351/pac198254122693.
48. Lee J.H., Byrne R.H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim. Cosmochim. Acta, 1992, vol. 56, no. 3, pp. 1127–1137. https://doi.org/10.1016/0016-7037(92)90050-S.
49. Huheey J.E. Inorganic Chemistry: Principles of Structure and Reactivity. New York, NY, Harper & Row, 1983. xvi, 936 p.
50. Spitsyn V.I., Martynenko L.I. Koordinatsionnaya khimiya redkozemel’nykh elementov [Coordination Chemistry of Rare-Earth Elements]. Moscow, Izd. Mosk. Univ., 1979. 254 p. (In Russian)
51. Sinha S.P. A systematic correlation of the properties of the f-transition metal ions. In: Rare Earths. Structure and Bonding. Vol. 30. Berlin, Heidelberg, Springer, 1976, pp. 1–64. https://doi.org/10.1007/3-540-07887-8_1.
52. Ionova G.V., Vokhmin V.G., Spitsyn V.I. Zakonomernosti izmeneniya svoistv lantanoidov i aktinoidov [Regularities of Changes of Lanthanide and Actinide Properies]. Moscow, Nauka, 1990. 240 p. (In Russian)
53. Martynenko L.I. Features of the complexation of trivalent rare earths. Russ. Chem. Rev., 1991, vol. 60, no. 9, pp. 1008–1022. https://doi.org/10.1070/RC1991v060n09ABEH001125.
54. Sawada K., Kuribayashi M., Suzuki T., Miyamoto H. Protonation equilibria of nitrilot-ris(methylenephosphonato)and ethylenediamine-tetrakis(methylenephosphonato)-complexes of scandium, yttrium, and lanthanoids. J. Solution Chem., 1991, vol. 20, no. 8, pp. 829–839. https://doi.org/10.1007/bf00675114.
Review
For citations:
Garifzyanov A.R., Mirzayanov I.I., Shurygin I.D., Chibirev E.O., Devyatov F.V. Complexation of trivalent lanthanide cations with amino(O-alkyl)methylenephosphonic acids as the closest organophosphorus analogues of nitrilotriacetic acid. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):223-241. (In Russ.) https://doi.org/10.26907/2542-064X.2025.2.223-241