Preview

Ученые записки Казанского университета. Серия Естественные науки

Расширенный поиск

Модификация электродов для увеличения генерации электроэнергии в растительных микробных топливных элементах

https://doi.org/10.26907/2542-064X.2025.2.201-222

Аннотация

Растительные микробные топливные элементы (РМТЭ) представляют собой альтернативу традиционным источникам электроэнергии, однако их применение ограничено невысокими электрохимическими характеристиками. Для повышения производительности РМТЭ используют различные модификации электродов. Проведено электрохимическое осаждение MnO2 на поверхность углеродного войлока с последующим использованием в качестве бифункционального материала для анода и катода в системах РМТЭ. Сравнение образцов углеродного войлока проводили по значениям электроактивной площади поверхности и количеству дефектов, установленных с помощью циклической вольтамперометрии и спектроскопии комбинационного рассеяния соответственно. Мощность систем РМТЭ составила 15, 2 и 33 мВт/м2 для контрольной системы РМТЭ, РМТЭ-анод-MnO2 и РМТЭ-катод-MnO2 соответственно. Применение MnO2 на катоде в составе РМТЭ обеспечивает двукратное увеличение генерации энергии.

Об авторах

Р. В. Лепикаш
Тульский государственный университет
Россия

Роман Владимирович Лепикаш - младший научный сотрудник лаборатории экологической и медицинской биотехнологии.

Тула


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Н. С. Захаров
Тульский государственный университет
Россия

Никита Сергеевич Захаров - младший научный сотрудник лаборатории экологической и медицинской биотехнологии.

Тула


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



П. В. Оськин
Тульский государственный университет
Россия

Павел Владимирович Оськин - младший научный сотрудник лаборатории экологической и медицинской биотехнологии.

Тула


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Д. И. Стом
Иркутский государственный университет; Байкальский музей Сибирского отделения РАН; Иркутский национальный исследовательский технический университет
Россия

Дэвард Иосифович Стом - доктор биологических наук, профессор, заслуженный работник Высшей Школы РФ, главный научный сотрудник Байкальского музея СО РАН; профессор кафедры зоологии позвоночных и экологии биолого-почвенного факультета, заведующий лабораторией водной токсикологии НИИ биологии, Иркутский ГУ; профессор кафедры инженерных коммуникаций и систем жизнеобеспечения, Иркутский НИТУ.

Иркутск; п. Листвянка


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Д. Г. Лаврова
Тульский государственный университет
Россия

Дарья Геннадьевна Лаврова - кандидат химических наук, старший научный сотрудник лаборатории экологической и медицинской биотехнологии.

Тула


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



С. В. Алферов
Тульский государственный университет
Россия

Сергей Валерьевич Алферов - кандидат химических наук, заведующий лаборатории экологической и медицинской биотехнологии.

Тула


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Список литературы

1. Machol B., Rizk S. Economic value of U.S. fossil fuel electricity health impacts // Environ. Int. 2013. V. 52. P. 75–80. https://doi.org/10.1016/j.envint.2012.03.003.

2. Abdelkareem M.A., Elsaid K., Wilberforce T., Kamil M., Sayed E.T., Olabi A. Environmental aspects of fuel cells: A review // Sci. Total Environ. 2021. V. 752. Art. 141803. https://doi.org/10.1016/j.scitotenv.2020.141803.

3. Sonawane A.V., Rikame S., Sonawane S.H., Gaikwad M., Bhanvase B., Sonawane S.S., Mungray A.K., Gaikwad R. A review of microbial fuel cell and its diversification in the development of green energy technology // Chemosphere. 2024. V. 350. Art. 141127. https://doi.org/10.1016/j.chemosphere.2024.141127.

4. Rabaey K., Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation // Trends Biotechnol. 2005. V. 23, No 6. P. 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008.

5. Pamintuan K.R.S., Sanchez K.M. Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna Radiata // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 703, No 1. Art. 012037. https://doi.org/10.1088/1757-899X/703/1/012037.

6. Al-Badani M., Chong P.L., Lim H.S. A mini review of the effect of modified carbon paper, carbon felt, and carbon cloth electrodes on the performance of microbial fuel cell // Int. J. Green Energy. 2024. V. 21, No 1. P. 170–186. https://doi.org/10.1080/15435075.2023.2194979.

7. Azri Y.M., Tou I., Sadi M. Electrodes materials evaluation in plant microbial fuel cells: A comparison of graphite and stainless steels // Biofuels. 2023. V. 14, No 10. P. 1077–1086. https://doi.org/10.1080/17597269.2023.2212987.

8. Zhang C., Zeng X., Xu X., Nie W., Dubey B.K., Ding W. PDA-Fe3O4 decorated carbon felt anode enhancing electrochemical performance of microbial fuel cells: Effect of electrode materials on electroactive biofilm // Chemosphere. 2024. V. 355. Art. 141764. https://doi.org/10.1016/j.chemosphere.2024.141764.

9. Agüero-Quiñones R., Ávila-Sánchez Z., Rojas-Flores S., Cabanillas-Chirinos L., De La Cruz-Noriega M., Nazario-Naveda R., Rojas-Villacorta W. Activated carbon electrodes for bioenergy production in microbial fuel cells using synthetic wastewater as substrate // Sustainability. 2023. V. 15, No 18. Art. 13767. https://doi.org/10.3390/su151813767.

10. Zou J., Chang Q., Guo C., Yan M. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer // J. Environ. Manage. 2023. V. 346. Art. 119048. https://doi.org/10.1016/j.jenvman.2023.119048.

11. Zhu K., Wang S., Liu H., Liu S., Zhang J., Yuan J., Fu W., Dang W., Xu Y., Yang X., Wang Z. Heteroatom-doped porous carbon nanoparticle-decorated carbon cloth (HPCN/CC) as efficient anode electrode for microbial fuel cells (MFCs) // J. Cleaner Prod. 2022. V. 336. Art. 130374. https://doi.org/10.1016/j.jclepro.2022.130374.

12. Chen L., Jiang L., Cheng L., Gao Y., Wang M., Xu L., Zhu Z. Kinetic study of electron transfer process in methyl orange decolorization by Shewanella in MFCs with covalent organic frameworks modified anode // Chemosphere. 2024. V. 350. Art. 141073. https://doi.org/10.1016/j.chemosphere.2023.141073.

13. Hidalgo D., Tommasi T., Bocchini S., Chiolerio A., Chiodoni A., Mazzarino I., Ruggeri B. Surface modification of commercial carbon felt used as anode for microbial fuel cells // Energy. 2016. V. 99. P. 193–201. https://doi.org/10.1016/j.energy.2016.01.039.

14. Yang J., Zhao Y.-G., Liu X., Fu Y. Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater // Mar. Pollut. Bull. 2022. V. 182. Art. 114013. https://doi.org/10.1016/j.marpolbul.2022.114013.

15. Huang X., Ma G. Graphite felt modified-graphene oxide/graphene as novel vanadium battery electrode material // Ferroelectrics. 2021. V. 579, No 1. P. 12–22. https://doi.org/10.1080/00150193.2021.1903263.

16. Zheng X., Hou S., Amanze C., Zeng Z., Zeng W. Enhancing microbial fuel cell performance using anode modified with Fe3O4 nanoparticles // Bioprocess Biosyst. Eng. 2022. V. 45, No 5. P. 877–890. https://doi.org/10.1007/s00449-022-02705-z.

17. Mumtaz M.W., Mukhtar H., Miran W., Alessa A.H., Waleed A., Sarwar Z., Ashraf H. Impact of CeO2 modified cathode and PANI modified anode on tannery wastewater fed microbial fuel cell perfor mance // Saudi J. Biol. Sci. 2024. V. 31, No 8. Art. 104024. https://doi.org/10.1016/j.sjbs.2024.104024.

18. Liu X., Zhao X., Yu Y.-Y., Wang Y.-Z., Shi Y.-T., Cheng Q.-W., Fang Z., Yong Y.-C. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting // Electrochim. Acta. 2017. V. 255. P. 41–47. https://doi.org/10.1016/j.electacta.2017.09.153.

19. Yoon C.-M., Long D., Jang S.-M., Qiao W., Ling L., Miyawaki J., Rhee C.-K., Mochida I., Yoon S.-H. Electrochemical surface oxidation of carbon nanofibers // Carbon. 2011. V. 49, No 1. P. 96–105. https://doi.org/10.1016/j.carbon.2010.08.047.

20. Zhang W., Xie B., Yang L., Liang D., Zhu Y., Liu H. Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell // Bioresour. Technol. 2017. V. 233. P. 291–295. https://doi.org/10.1016/j.biortech.2017.02.124.

21. Zhou M., Chi M., Wang H., Jin T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells // Biochem. Eng. J. 2012. V. 60. P. 151–155. https://doi.org/10.1016/j.bej.2011.10.014.

22. Luo J., Chi M., Wang H., He H., Zhou M. Electrochemical surface modification of carbon mesh anode to improve the performance of air-cathode microbial fuel cells // Bioprocess Biosyst. Eng. 2013. V. 36, No 12. P. 1889–1896. https://doi.org/10.1007/s00449-013-0963-x.

23. Hirose S., Takasugi K., Nakamoto T., Taguchi K. Cobalt-intercalated birnessite-type manganese oxide catalysts for low-cost cathodes in microbial fuel cells // Resourceedings. 2023. V. 3, No 3. P. 17–22. https://doi.org/10.21625/resourceedings.v3i3.1025.

24. Chen J., Zhao K., Wu Y., Liu J., Wang R., Yang Y., Liu Y. Improved bioelectrochemical performance of MnO2 nanorods modified cathode in microbial fuel cell // Environ. Sci. Pollut. Res. 2023. V. 30, No 17. P. 49052–49059. https://doi.org/10.1007/s11356-023-25787-y.

25. Wang Y., Hu G., Zheng D., Dong J., Wang J. High-capacitance manganese dioxide oxide/carbon nanotube/carbon felt as a bioanode for enhanced energy output in microbial fuel cells // Coatings. 2023. V. 13, No 6. Art. 1043. https://doi.org/10.3390/coatings13061043.

26. Ravinuthala S., Anilbhai B.V., Settu S. Fabrication of low-cost, green material-based microbial fuel cell for bioelectricity production through textile wastewater remediation // Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.04.528.

27. Majidi M.R., Farahani F.S., Hosseini M., Ahadzadeh I. Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell // Bioelectrochemistry. 2019. V. 125. P. 38–45. https://doi.org/10.1016/j.bioelechem.2018.09.004.

28. Xu Q., Wang J.-M., Cheng X.-L., Jiang Y.-Q., Tian R.-R., Fu H., Ji Y.-X., Zhou J., Ji G.-S., Yong X.-Y. Electricity generation and energy storage in microbial fuel cells with manganese dioxide capacitive electrode // J. Power Sources. 2024. V. 598. Art. 234192. https://doi.org/10.1016/j.jpowsour.2024.234192.

29. Zhang C., Liang P., Jiang Y., Huang X. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode // J. Power Sources. 2015. V. 273. P. 580–583. https://doi.org/10.1016/j.jpowsour.2014.09.129.

30. Phonsa S., Sreearunothai P., Charojrochkul S., Sombatmankhong K. Electrodeposition of MnO2 on polypyrrole-coated stainless steel to enhance electrochemical activities in microbial fuel cells // Solid State Ionics. 2018. V. 316. P. 125–134. https://doi.org/10.1016/j.ssi.2017.11.022.

31. Yu S., Liu Y., Zhao Y., Khan R., Cao X., Li C. CNFs@MnO2 nanofiber as anode material for improving the extracellular electron transfer of microbial fuel cells // Catal. Sci. Technol. 2024. V. 14, No 2. P. 464–477. https://doi.org/10.1039/D3CY01510F.

32. Zhang C., Liang P., Yang X., Jiang Y., Bian Y., Chen C., Zhang X., Huang X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell // Biosens. Bioelectron. 2016. V. 81. P. 32–38. https://doi.org/10.1016/j.bios.2016.02.051.

33. ГОСТ 32426-2013 Методы испытаний химической продукции, представляющей опасность для окружающей среды. Испытание ряски на угнетение роста. М.: Стандартинформ, 2019. 20 с.

34. Юшин Ю.В., Подкопайло Р.В., Петрова Д.А., Егоров К.А., Трухин В.П. Обзор питательных сред, используемых для культивации рекомбинантной Escherichia coli // Медицина экстремальных ситуаций. 2019. Т. 21, № 3. С. 444–453.

35. Земскова Л.А., Войт А.В., Баринов Н.Н., Кайдалова Т.А. Функциональные материалы на основе диоксида марганца, нанесенного на углеродное волокно // Физика и химия стекла. 2014. Т. 40, № 1. С. 3–10.

36. Yong X.-Y., Gu D.-Y., Wu Y.-D., Yan Z.-Y., Zhou J., Wu X.-Y., Wei P., Jia H.-H., Zheng T., Yong Y.-C. Bio-Electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation // J. Hazard. Mater. 2017. V. 324. Pt. B. P. 178–183. https://doi.org/10.1016/j.jhazmat.2016.10.047.

37. Hodkiewicz J. Characterizing graphene with Raman spectroscopy // Thermo-Fisher Scientific Application Note. 2010. 3 p.

38. Bonpua J., Yagües Y., Aleshin A., Disappa S., Camacho J. Flame temperature effect on sp2 bonds on nascent carbon nanoparticles formed in premixed flames (Tf,max > 2100 K): A Raman spectroscopy and particle mobility sizing study // Proc. Combust. Inst. 2019. V. 37, No 1. P. 943–951. https://doi.org/10.1016/j.proci.2018.06.124.

39. Armano A., Agnello S. Two-dimensional carbon: A review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene // C. 2019. V. 5, No 4. Art. 67. https://doi.org/10.3390/c5040067.

40. Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy // Nano Lett. 2012. V. 12, No 8. P. 3925–3930. https://doi.org/10.1021/nl300901a.

41. Lübke M., Sumboja A., McCafferty L., Armer C.F., Handoko A.D., Du Y., McColl K., Cora F., Brett D., Liu Zh., Darr J.A. Transition-metal-doped α-MnO2 nanorods as bifunctional catalysts for efficient oxygen reduction and evolution reactions // ChemistrySelect. 2018. V. 3, No 9. P. 2613–2622. https://doi.org/10.1002/slct.201702514.

42. Julien C., Massot M., Rangan S., Lemal M., Guyomard D. Study of structural defects in γ-MnO2 by Raman spectroscopy // J. Raman Spectrosc. 2002. V. 33, No 4. P. 223–228. https://doi.org/10.1002/jrs.838.

43. Langner J., Bruns M., Dixon D., Nefedov A., Wöll Ch., Scheiba F., Ehrenberg H., Roth C., Melke J. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries // J. Power Sources. 2016. V. 321. P. 210–218. https://doi.org/10.1016/j.jpowsour.2016.04.128.

44. Ataherian F., Lee K.-T., Wu N.-L. Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials // Electrochim. Acta. 2010. V. 55, No 25. P. 7429–7435. https://doi.org/10.1016/j.electacta.2010.01.102.

45. Ouda E., Yousf N., Magar H.S., Hassan R.Y.A., Duraia E.-S.M. Electrochemical properties of MnO2-based carbon nanomaterials for energy storage and electrochemical sensing // J. Mater. Sci: Mater. Electron. 2023. V. 34, No 8. Art. 731. https://doi.org/10.1007/s10854-023-10107-4.

46. Yang L., Wang A., Wen Q., Chen Y. Modified cobalt-manganese oxide-coated carbon felt anodes: An available method to improve the performance of microbial fuel cells // Bioprocess Biosyst. Eng. 2021. V. 44, No 12. P. 2615–2625. https://doi.org/10.1007/s00449-021-02631-6.

47. Yuan H., Deng L., Chen Y., Yuan Y. MnO2/polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells // Electrochim. Acta. 2016. V. 196. P. 280–285. https://doi.org/10.1016/j.electacta.2016.02.183.

48. Mishra P., Jain R. Electrochemical deposition of MWCNT-MnO2/PPy nanocomposite application for microbial fuel cells // Int. J. Hydrogen Energy. 2016. V. 41, No 47. P. 22394–22405. https://doi.org/10.1016/j.ijhydene.2016.09.020.

49. Gnana Kumar G., Awan Z., Nahm K.S., Xavier J.S. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells // Biosens. Bioelectron. 2014. V. 53. P. 528–534. https://doi.org/10.1016/j.bios.2013.10.012.

50. Bataillou G., Haddour N., Vollaire C. Bioelectricity production of PMFC using Lobelia Queen Cardinalis in individual and shared soil configurations // E3S Web Conf. 2022. V. 334. Art. 08001. https://doi.org/10.1051/e3sconf/202233408001.

51. Sarma P.J., Mohanty K. Development and comprehensive characterization of low-cost hybrid clay based ceramic membrane for power enhancement in plant based microbial fuel cells (PMFCs) // Mater. Chem. Phys. 2023. V. 296. Art. 127337. https://doi.org/10.1016/j.matchemphys.2023.127337.

52. Sarma P.J., Mohanty K. A novel three-chamber modular PMFC with bentonite/flyash based clay membrane and oxygen reducing biocathode for long term sustainable bioelectricity generation // Bioelectrochemistry. 2022. V. 144. Art. 107996. https://doi.org/10.1016/j.bioelechem.2021.107996.

53. Bataillou G., Ondel O., Haddour N. 900-Days long term study of plant microbial fuel cells and complete application for powering wireless sensors // J. Power Sources. 2024. V. 593. Art. 233965. https://doi.org/10.1016/j.jpowsour.2023.233965.

54. Zhou X., Xu Y., Mei X., Du N., Jv R., Hu Z., Chen S. Polyaniline/β-MnO2 nanocomposites as cathode electrocatalyst for oxygen reduction reaction in microbial fuel cells // Chemosphere. 2018. V. 198. P. 482–491. https://doi.org/10.1016/j.chemosphere.2018.01.058.

55. Zhang H., Wu Y., Zhong C., Wang G., Wang B., Ma C., Zhang H., Ding C., Liu Y., Kong C., Yang Z., Wang T., Zhu H. MnO2@rGO modified stainless steel mesh as cathode membrane in MFC-MBR for enhanced bioelectricity generation and membrane fouling mitigation // J. Water Process Eng. 2024. V. 66. Art. 106111. https://doi.org/10.1016/j.jwpe.2024.106111.

56. Ntyam Mendo S.A., Kouitcheu Mabeku L.B., Tounkara L.S., Nguemezi S.T., Ngane R.A.N., Sameza L.M. Abiotic conditions on growth of Pseudomonas fluorescens (DS17R) and its ability to produce secondary metabolites (including phenazines) against Phytophthora colocasiae, the causal agent of taro leaf blight // Austin J. Biotechnol. Bioeng. 2018. V. 5, No 2. Art. 1095.

57. Mavrodi D.V., Blankenfeldt W., Thomashow L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation // Annu. Rev. Phytopathol. 2006. V. 44. P. 417–445. https://doi.org/10.1146/annurev.phyto.44.013106.145710.

58. Horvath A.S., Garrick L.V., Moreau J.W. Manganese-reducing Pseudomonas fluorescens-group bacteria control arsenic mobility in gold mining-contaminated groundwater // Environ. Earth Sci. 2014. V. 71, No 9. P. 4187–4198. https://doi.org/10.1007/s12665-013-2809-x.

59. Fu Y., Yu J., Zhang Y., Meng Y. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells // Appl. Surf. Sci. 2014. V. 317. P. 84–89. https://doi.org/10.1016/j.apsusc.2014.08.044.

60. Gao C., Liu L., Yu T., Yang F. Development of a novel carbon-based conductive membrane with in-situ formed MnO2 catalyst for wastewater treatment in bio-electrochemical system (BES) // J. Membr. Sci. 2018. V. 549. P. 533–542. https://doi.org/10.1016/j.memsci.2017.12.053.

61. Olias L.G., Otero A.R., Cameron P.J., Di Lorenzo M. A soil microbial fuel cell-based biosensor for dissolved oxygen monitoring in water // Electrochim. Acta. 2020. V. 362. Art. 137108. https://doi.org/10.1016/j.electacta.2020.137108.


Рецензия

Для цитирования:


Лепикаш Р.В., Захаров Н.С., Оськин П.В., Стом Д.И., Лаврова Д.Г., Алферов С.В. Модификация электродов для увеличения генерации электроэнергии в растительных микробных топливных элементах. Ученые записки Казанского университета. Серия Естественные науки. 2025;167(2):201-222. https://doi.org/10.26907/2542-064X.2025.2.201-222

For citation:


Lepikash R.V., Zakharov N.S., Oskin P.V., Stom D.I., Lavrova D.G., Alferov S.V. Modification of electrodes to boost electricity generation in plant microbial fuel cells. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):201-222. (In Russ.) https://doi.org/10.26907/2542-064X.2025.2.201-222

Просмотров: 103


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2542-064X (Print)
ISSN 2500-218X (Online)