Electrochemical sensor for assessing the accumulation of extracellular matrix in cultured chondrospheres
https://doi.org/10.26907/2542-064X.2025.2.185-200
Abstract
The degeneration of cartilage in articular joints is a significant medical concern due to its high incidence rate. Damaged articular cartilage has a limited ability to regenerate naturally and thus often requires regenerative therapy. Intra-articular matrix-associated autologous chondrocyte transplantation, which involves the introduction of chondrocytes into the damaged area either as part of tissue-engineered constructs with a carrier matrix (scaffold) or in the form of tissue spheroids (chondrospheres), is generally considered the gold standard for treating such defects. This approach is probably the most biomimetic restorative articular cartilage treatment in the sense that it supports the cells in spheroids to produce and accumulate their own extracellular matrix. The growing interest in large-scale production of such biomedical cellular products raises the question of accessible and effective methods for assessing the quality of obtained chondrospheres, both in terms of their chemical composition and biological properties. Here, a sensor prototype based on comparative electrochemical profiling of chondrospheres is proposed for quantitative assessment of the accumulation of extracellular matrix components in hyaline cartilage.
Keywords
About the Authors
V. D. NovikovaRussian Federation
Victoria D. Novikova - Junior Researcher, Laboratory of Cell Biology.
Moscow
Competing Interests:
The authors declare no conflicts of interest
L. E. Agafonova
Russian Federation
Lyubov E. Agafonova - Cand. Sci. (Chemistry), Senior Researcher, Laboratory of Bioelectrochemistry.
Moscow
Competing Interests:
The authors declare no conflicts of interest
G. E. Leonov
Russian Federation
Georgy E. Leonov - Junior Researcher, Laboratory of Cell Biology.
Moscow
Competing Interests:
The authors declare no conflicts of interest
L. A. Kirsanova
Russian Federation
Lyudmila A. Kirsanova - Cand. Sci. (Biology), Senior Researcher, Department of Biomedical Materials and Tissue Engineering.
Moscow
Competing Interests:
The authors declare no conflicts of interest
Yu. B. Basok
Russian Federation
Yulia B. Basok - Dr. Sci. (Biology), Head of Department of Biomedical Materials and Tissue Engineering.
Moscow
Competing Interests:
The authors declare no conflicts of interest
A. V. Kovalev
Russian Federation
Alexey V. Kovalev - Cand. Sci. (Medicine), Head of Laboratory of Cell Technologies and Medicinal Genetics.
Moscow
Competing Interests:
The authors declare no conflicts of interest
V. V. Shumyantseva
Russian Federation
Victoria V. Shumyantseva - Dr. Sci. (Biology), Full Professor, Chief Researcher, Head of Laboratory of Bioelectrochemistry.
Moscow
Competing Interests:
The authors declare no conflicts of interest
K. N. Yarygin
Russian Federation
Konstantin N. Yarygin - Dr. Sci. (Biology), Corresponding Member of Russian Academy of Sciences, Chief Researcher, Head of the Laboratory of Cell Biology.
Moscow
Competing Interests:
The authors declare no conflicts of interest
I. V. Vakhrushev
Russian Federation
Igor V. Vakhrushev - Cand. Sci. (Medicine), Senior Researcher, Laboratory of Cell Biology.
Moscow
Competing Interests:
The authors declare no conflicts of interest
References
1. Gille J., Behrens P., Schulz A.P., Oheim R., Kienast B. Matrix-associated autologous chondrocyte implantation: A clinical follow-up at 15 years. Cartilage, 2016, vol. 7, no. 4, pp. 309–315. https://doi.org/10.1177/1947603516638901.
2. Carey J.L., Remmers A.E., Flanigan D.C. Use of MACI (autologous cultured chondrocytes on porcine collagen membrane) in the United States: Preliminary experience. Orthop. J. Sports Med., 2020, vol. 8, no. 8, art. 2325967120941816. https://doi.org/10.1177/2325967120941816.
3. Vonk L.A., Roël G., Hernigou J., Kaps C., Hernigou P. Role of matrix-associated autologous chondrocyte implantation with spheroids in the treatment of large chondral defects in the knee: A systematic review. Int. J. Mol. Sci., 2021, vol. 22, no. 13, art. 7149. https://doi.org/10.3390/ijms22137149.
4. Omelyanenko N.P., Karalkin P.A., Bulanova E.A., Koudan E.V., Parfenov V.A., Rodionov S.A., Knyazeva A.D., Kasyanov V.A., Babichenko I.I., Chkadua T.Z., Khesuani Y.D., Gryadunova A.A., Mironov V.A. Extracellular matrix determines biomechanical properties of chondrospheres during their maturation in vitro. Cartilage, 2020, vol. 11, no. 4, pp. 521–531. https://doi.org/10.1177/1947603518798890.
5. Vakhrushev I.V., Basok Y.B., Baskaev K.K., Novikova V.D., Leonov G.E., Grigoriev A.M., Belova A.D., Kirsanova L.A., Lupatov A.Y., Burunova V.V., Kovalev A.V., Makarevich P.I., Sevastianov V.I., Yarygin K.N. Cartilage-specific gene expression and extracellular matrix deposition in the course of mesenchymal stromal cell chondrogenic differentiation in 3D spheroid culture. Int. J. Mol. Sci., 2024, vol. 25, no. 11, art. 5695. https://doi.org/10.3390/ijms25115695.
6. Hoburg A., Löer I., Körsmeier K., Siebold R., Niemeyer P., Fickert S., Ruhnau K. Matrix-associated autologous chondrocyte implantation is an effective treatment at midterm follow-up in adolescents and young adults. Orthop. J. Sports Med., 2019, vol. 7, no. 4, art. 2325967119841077. https://doi.org/10.1177/2325967119841077.
7. Eschen C., Kaps C., Widuchowski W., Fickert S., Zinser W., Niemeyer Ph., Roël G. Clinical outcome is significantly better with spheroid-based autologous chondrocyte implantation manufactured with more stringent cell culture criteria. Osteoarthritis Cartilage Open, 2020, vol. 2, no. 1, art. 100033. https://doi.org/10.1016/j.ocarto.2020.100033.
8. Lovley D.R. Electromicrobiology. Annu. Rev. Microbiol., 2012, vol. 66, pp. 391–409. https://doi.org/10.1146/annurev-micro-092611-150104.
9. Brabec V., Mornstein V. Electrochemical behaviour of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions. Biochim. Biophys. Acta, Protein Struct., 1980, vol. 625, no. 1, pp. 43–50. https://doi.org/10.1016/0005-2795(80)90106-3.
10. Malfoy B., Reynaud J.A. Electrochemical investigations of amino acids at solid electrodes: Part II. Amino acids containing no sulfur atoms: Tryptophan, tyrosine, histidine and derivatives. J. Electroanal. Chem. Interfacial Electrochem., 1980, vol. 114, no. 2, pp. 213–223. https://doi.org/10.1016/S0022-0728(80)80448-7.
11. Shumyantseva V.V., Shebanova A.S., Chalenko Ya.M., Voeikova T.A., Kirpichnikov M.P., Shaitan K.V., Debabov V.G. Electroanalysis of Shewanella oneidensis MR-1. Dokl. Biochem. Biophys., 2015, vol. 464, no. 1, pp. 325–328. https://doi.org/10.1134/S1607672915050154.
12. Chalenko Y., Shumyantseva V., Ermolaeva S., Archakov A. Electrochemistry of Escherichia coli JM109: Direct electron transfer and antibiotic resistance. Biosens. Bioelectron., 2012, vol. 32, no. 1, pp. 219–223. https://doi.org/10.1016/j.bios.2011.12.015.
13. Agafonova L.E., Zhdanov D.D., Gladilina Y.A., Shishparenok A.N., Shumyantseva V.V. Electrochemical approach for the analysis of DNA degradation in native DNA and apoptotic cells. Heliyon, 2024, vol. 10, no. 3, art. e25602. https://doi.org/10.1016/j.heliyon.2024.e25602.
14. Zhdanov D.D., Ivin Yu.Yu., Shishparenok A.N., Kraevskiy S.V., Kanashenko S.L., Agafonova L.E., Shumyantseva V.V., Gnedenko O.V., Pinyaeva A.N., Kovpak A.A., Ishmukhametov A.A., Archakov A.I. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. Biomed. Khim., 2023, vol. 69, no. 5, pp. 253–280. https://doi.org/10.18097/PBMC20236905253.
15. Silina Y.E., Fink-Straube C., Koch M., Zolotukhina E.V. A rapid in vitro electrochemical screening of extracellular matrix of Saccharomyces cerevisiae by palladium nanoparticles-modified electrodes. Bioelectrochemistry, 2023, vol. 149, art. 108283. https://doi.org/10.1016/j.bioelechem.2022.108283.
16. Agafonova L.E., Vakhrushev I.V., Novikova V.D., Yarygin K.N., Shumyantseva V.V. Prospects of electrochemical methods for the comparative analysis of two-dimensional cultures of chondrocites and cell spheroids. Tezisy dokl. Mezhdunar. kong. “Biotekhnologiya: sostoyanie i perspektivy razvitiya”, Moskva, 25 sent. 2023 g. [Proc. Int. Congr. “Biotechnology: State of the Art and Perspectives”, Moscow, September 25, 2023]. Issue 21. Moscow, OOO “Ekspo-Biokhim-Tekhnologii”, 2023, pp. 56–58. https://doi.org/10.37747/2312-640X-2023-21-56-58. (In Russian)
17. Basok Yu.B., Grigoriev A.M., Kirsanova L.A., Vakhrushev I.V., Tsvetkova A.V., Gryadunova A.A., Yarygin K.N., Sevastianov V.I. The comparative study of chondrogenic differentiation of mesenchymal stromal cells allocated from different sources. Vestn. Transplantologii Iskusstv. Organov, 2019, vol. 21, no. 1, pp. 101–112. https://doi.org/10.15825/1995-1191-2019-1-101-112. (In Russian)
18. Tsvetkova A.V., Vakhrushev I.V., Basok Yu.B., Grigor’ev A.M., Kirsanova L.A., Lupatov A.Yu., Sevastianov V.I., Yarygin K.N. Chondrogeneic potential of the MSC of different origin in spheroid culture. Bull. Exp. Biol. Med., 2021, vol. 170, no. 4, pp. 528–536. https://doi.org/10.1007/s10517-021-05101-x.
19. Cui X., Hartanto Y., Zhang H. Advances in multicellular spheroids formation. J. R. Soc. Interface, 2017, vol. 14, no. 127, art. 20160877. https://doi.org/10.1098/rsif.2016.0877.
20. Grevenstein D., Mamilos A., Schmitt V.H., Niedermair T., Wagner W., Kirkpatrick C.J., Brochhausen C. Excellent histological results in terms of articular cartilage regeneration after spheroid-based autologous chondrocyte implantation (ACI). Knee Surg. Sports Traumatol. Arthrosc., 2021, vol. 29, no. 2, pp. 417–421. https://doi.org/10.1007/s00167-020-05976-9.
21. Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays, 1995, vol. 17, no. 12, pp. 1039–1048. https://doi.org/10.1002/bies.950171208.
22. Astashkina A., Grainger D.W. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv. Drug Delivery Rev., 2014, vol. 69–70, pp. 1–18. https://doi.org/10.1016/j.addr.2014.02.008.
23. Esch E.W., Bahinski A., Huh D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discovery, 2015, vol. 14, no. 4, pp. 248–260. https://doi.org/10.1038/nrd4539.
24. Hjelm B.E., Berta A.N., Nickerson C.A., Arntzen C.J., Herbst-Kralovetz M.M. Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol. Reprod., 2010, vol. 82, no. 3, pp. 617–627. https://doi.org/10.1095/biolreprod.109.080408.
25. Radtke A.L., Herbst-Kralovetz M.M. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. J. Visualized Exp., 2012, no. 62, art. e3868. https://doi.org/10.3791/3868.
26. Shologu N., Gurdal M., Szegezdi E., FitzGerald U., Zeugolis D.I. Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials, 2022, vol. 287, art. 121642. https://doi.org/10.1016/j.biomaterials.2022.121642.
27. Neame P.J., Barry F.P. The link proteins. Experientia, 1993, vol. 49, no. 5, pp. 393–402. https://doi.org/10.1007/BF01923584.
28. Wilusz R.E., Sanchez-Adams J., Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol., 2014, vol. 39, pp. 25–32. https://doi.org/10.1016/j.matbio.2014.08.009.
Review
For citations:
Novikova V.D., Agafonova L.E., Leonov G.E., Kirsanova L.A., Basok Yu.B., Kovalev A.V., Shumyantseva V.V., Yarygin K.N., Vakhrushev I.V. Electrochemical sensor for assessing the accumulation of extracellular matrix in cultured chondrospheres. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki. 2025;167(2):185-200. (In Russ.) https://doi.org/10.26907/2542-064X.2025.2.185-200