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Синтез и свойства гидрогелей на основе сополимеров 
коллаген–пектин–метилметакрилат, синтезированных 

в присутствии триэтилборана

Ю.Л. Кузнецова1, К.С. Гущина1 , В.В. Продаевич1, М.Н. Егорихина2, О.Н. Смирнова1, 
А.С. Вавилова1, К.С. Губарева1, И.Н. Чарыкова2, Ю.П. Рубцова2, Т.А. Ковылина3, 

Л.Л. Семенычева1

1Нижегородский государственный университет им. Н.И. Лобачевского,  
г. Нижний Новгород, Россия

2Приволжский исследовательский медицинский университет, г. Нижний Новгород, Россия
3 Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук, 

г. Нижний Новгород, Россия
ksesha.gushchina@gmail.com

Аннотация

Синтезированы сополимеры коллаген–пектин–метилметакрилат в уксуснокислой дисперсии в 
присутствии аминного комплекса триэтилбора. Установлено, что температура синтеза практически 
не влияет на состав сополимера, а его морфология претерпевает значительные изменения. Исполь-
зование аминного комплекса в сочетании с п-хиноном в синтезе сополимеров коллаген–пектин–ме-
тилметакрилат позволяет варьировать состав сополимера, молекулярную массу привитого полиме-
тилметакрилата и морфологию в зависимости от строения п-хинона. В присутствии глутарового 
альдегида сформированы гидрогели на основе синтезированных сополимеров, влагопоглощающие 
свойства и устойчивость в буферных растворах которых позволяют считать их перспективной осно-
вой материалов для регенеративной медицины. С помощью МТТ-теста установлено, что получен-
ные материалы не обладают цитотоксичностью и оказывают стимулирующий эффект на рост клеток 
дермальных фибробластов человека. Анализ биоцидности показал, что гидрогели коллаген–пектин–
метилметакрилат могут быть использованы в качестве грибостойких бактерицидных материалов.

Ключевые слова: регенеративная медицина, гидрогель, коллаген, пектин, метилметакрилат, 
п-хинон, триэтилбор, цитотоксичность, влагопоглощение.

Заключение Комитета по этике. Выполненные исследования соответствуют этическим прин-
ципам, сформулированным в Хельсинской декларации (1964 г.) для исследований с участием людей. 
Забор биоматериала и получение культуры клеток с последующим их использованием для иссле-
дований in vitro были одобрены местным этическим комитетом ФГБОУ ВО «Приволжский иссле-
довательский медицинский университет» (Нижний Новгород, Россия) (протокол № 09 от 30 июня 
2023 г.). Культуры клеток, использованные в исследовании, получены в лаборатории биотехнологии 
ФГБОУ ВО «Приволжский исследовательский медицинский университет» и использованы только 
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Abstract

Collagen–pectin–methyl methacrylate copolymers were synthesized in an acetic acid dispersion 
in the presence of a triethylboron amine complex. The synthesis temperature was found to have little 
effect on the copolymer composition, while its morphology changed significantly. By using the amine 
complex in combination with p-quinone during the synthesis of collagen–pectin–methyl methacrylate 
copolymers, it was possible to vary the copolymer composition, the molecular weight of grafted 
polymethyl methacrylate, and the resulting morphology depending on the structure of the p-quinone used. 
Hydrogels based on the synthesized copolymers were formed in the presence of glutaric aldehyde. Their 
moisture-absorbing properties and stability in buffer solutions make them promising base materials for 
regenerative medicine. The absence of cytotoxicity and the stimulatory effect of the obtained materials 
on the growth of human dermal fibroblasts were demonstrated by the MTT assay. The analysis of biocidal 
activity indicates that collagen–pectin–methyl methacrylate hydrogels have a clear potential as fungus-
resistant bactericidal materials.

Keywords: regenerative medicine, hydrogel, collagen, pectin, methyl methacrylate, p-quinone, 
triethylborane, cytotoxicity, moisture absorption



Ю.Л. Кузнецова и др. | Синтез и свойства гидрогелей… 571

Учен. зап. Казан. ун-та. Сер. Естеств. науки | 2025;167(4):569–589 

Institutional Review Board Statement. The studies were conducted in compliance with ethical 
regulations outlined in the Declaration of Helsinki (1964) for investigations involving humans. The 
extraction of biomaterial and the preparation of cell cultures for subsequent in vitro experiments were 
approved by the Ethics Committee of Privolzhsky Research Medical University (Nizhny Novgorod, Russia) 
(protocol no. 09 dated June 30, 2023). All cell cultures were obtained from the Laboratory of Biotechnology 
of Privolzhsky Research Medical University and used for laboratory research only.

Informed Consent Statement. Informed consent was obtained from all subjects involved in the 
study before the extraction of biomaterial.

Acknowledgments. The study was performed using the equipment of the Center for Collective Use 
“New Materials and Resource-Saving Technologies” (National Research Lobachevsky State University 
of Nizhny Novgorod) and the Center for Collective Use “Analytical Center of G.A. Razuvaev Institute 
of Organometallic Chemistry of Russian Academy of Sciences”. Financial support was provided by the 
Ministry of Science and Higher Education of the Russian Federation (basic part of the state assignment, 
project no. FSWR-2023-0025).

For citation: Kuznetsova Yu.L., Gushchina K.S., Prodaevich V.V., Egorikhina M.N., Smirnova O.N., 
Vavilova A.S., Gubareva K.S., Charykova I.N., Rubtsova Yu.P., Kovylina T.A., Semenycheva L.L. Synthesis 
and properties of hydrogels based on collagen–pectin–methyl methacrylate copolymers synthesized in the 
presence of triethylborane. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2025, 
vol. 167, no. 4, pp. 569–589. https://doi.org/10.26907/2542-064X.2025.4.569-589. (In Russian)

Введение

Гидрогели на основе природных полимеров являются перспективными материалами в 
качестве повязок для ран различной этиологии. Они способствуют заживлению поврежден-
ных тканей, благодаря биосовместимости, биоразлагаемости, биологической активности, 
способности удерживать большое количество влаги, водо- и газопроницаемости, биомиме-
тической структуре, способствующим адгезии, росту и пролиферации клеток [1–4]. Биопо-
лимеры природного происхождения чаще всего получают при переработке морепродуктов 
(коллаген, полисахариды и др.) или растительного сырья (пектин, изолят и др.) [5–8]. Биопо-
лимеры проявляют уникальные антиоксидантные, биоцидные, гемостатические свойства [9],  
которые подчеркивают важность их изучения как потенциальной альтернативы обычным 
материалам. Необходимым дополнительным этапом при формировании гидрогелей на ос-
нове природных полимеров является введение дополнительных модификаторов, позволяю-
щих получить устойчивые трехмерные структуры [10–14].

Как показано ранее [15], представляют интерес сополимеры на основе коллагена, пектина 
и метилметакрилата (ММА), полученные в присутствии комплекса триэтилбора с гексаме-
тилендиамином (ТЭБ-ГМДА) в уксуснокислой дисперсии, содержащей до 2.5 % природных 
полимеров. Сополимеры коллаген–пектин–ММА имеют сшитую структуру, формирование 
которой связано с образованием привитого сополимера двумя путями — «grafting from» и 
«grafting to». Такие полимеры перспективны для получения скаффолдов. Однако серьезным 
недостатком получения трехмерных структур в указанных условиях является разделение 
реакционной массы по окончании синтеза на две фазы: дисперсию и пену на поверхности. 
Цель настоящей работы состоит в получении однородных дисперсий сополимеров колла-
ген–пектин–ММА и устойчивых гидрогелей на их основе, а также анализ цитотоксичности 
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для оценки возможности использования таких гидрогелей в скаффолд-технологиях. Для 
достижения поставленной цели использованы два подхода: повышение исходной концен-
трации природных полимеров и введение п-хинонов совместно с борорганическими соеди-
нениями в состав реакционной смеси полимеризата, заметно влияющих на параметры про-
цесса и конечного продукта, благодаря участию в стадиях полимеризации, как это показано 
в работе [16].

1. Материалы и методы

1.1. Материалы. Органические растворители и мономеры очищали по общепринятым 
методикам [17]. ММА квалификации ч.д.а. (Sigma Aldrich, США) отмывали от ингибито-
ра 10 %-ным водным раствором щелочи, затем дистиллированной водой до нейтрального 
значения pH промывных вод, сушили сульфатом натрия и перегоняли при пониженном дав-
лении, собирая фракцию с температурой 25 °С/2.93 кПа. Коллаген выделяли из кожи тре-
ски по запатентованной методике [18]. Пектин пищевой («С.Пудовъ», Россия), ТЭБ-ГМДА  
(АО «Авиабор», Россия) и 50 %-ный водный раствор глутарового альдегида (Русхим, Рос-
сия) использовали без предварительной очистки.

1.2. Синтез сополимеров. Для проведения синтеза использовали трехгорлую колбу, в 
которую на первом этапе помещали 30 мл 3 %-ной уксуснокислой дисперсии, содержащей 
0.3–0.9 г коллагена и 0.3–0.9 г пектина, и нагревали на водяной бане до 60–70 °С или остав-
ляли без нагрева в атмосфере аргона. По достижении заданной температуры добавляли 
комплекс ТЭБ-ГМДА при массовом соотношении борорганическое соединение/природные 
полимеры, равном 1 : 5 или 1 : 6, выдерживали 0.5 ч и добавляли мономер (0.6–1.8 г ММА 
или раствор п-хинона с концентрацией 0.0025 % мольн. в ММА). Реакционную смесь вы-
держивали еще 3 ч в атмосфере аргона при постоянном перемешивании. Для формирования 
гидрогелей добавляли 5 %-ный водный раствор глутарового альдегида.

1.3. Определение остаточного мономера. Количество остаточного мономера опре-
деляли бромированием по методу Кноппа [19]. Содержание мономера в % вычисляли по 
формуле:

где a и b – объемы раствора Na2S2O3, затраченного на титрование контрольной и анализи-
руемой проб соответственно, мл; М – молярная масса ММА, г/моль; m – навеска образца 
сополимера, г.

На основе полученного значения рассчитывали массы непрореагировавшего мономера 
(mост.м.) и мономера, вошедшего в состав сополимера (mсинт.ч.):

где X – содержание остаточного мономера в реакционной смеси, %; mр.с. – масса реакци-
онной смеси, г; mост.м. – масса непрореагировавшего мономера, г; mисх.м. – начальная масса 
мономера, использованного в синтезе, г; mсинт.ч. – масса мономера, вошедшего в состав со-
полимера, г.

1.4. Определение содержания азота в сополимере определяли методом CHNS-ана-
лиза на элементном анализаторе Vario EL cube (Elementar GmbH, Германия).
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1.5. Ферментативный гидролиз сополимеров ММА проводили с использованием 
коллагеназы и пектиназы. Образцы сополимеров предварительно высушивали. Затем к об-
разцу добавляли коллагеназу (4 % от массы сополимера) и воду (10 мл на 0.1 г сополимера). 
Смесь выдерживали в течение 1 сут, затем добавляли пектиназу (4 % от массы сополимера) 
и инкубировали еще в течение суток, а затем отфильтровывали. Оставшийся на фильтре по-
лиметилметакрилат (ПММА) растворяли в хлороформе и концентрировали при понижен-
ном давлении.

1.6. Гель-проникающая хроматография. Определение молекулярно-массовых  
характеристик уксуснокислой дисперсии сополимеров проводили методом гель-проникаю-
щей хроматографии с использованием “Knauer Smartline” (Германия) системы с колонками 
Phenogel Phenomenex 5u (300×7.8 мм), средний диаметр пор 104, 105Å, и рефрактометриче-
ским детектором. В качестве подвижной фазы использовали тетрагидрофуран при скорости 
потока 2 мл/мин. Температура составляла 40 °C. Для градуировки использованы полисти-
рольные стандарты со значением молекулярных масс в диапазоне от 2700 до 2570000 Да.

1.7. Сканирующая электронная микроскопия (СЭМ). Изображения поверхности со-
полимеров после лиофильной сушки получали с помощью растрового электронного микро-
скопа JEOL JSM-IT300LV (Япония) в режиме низкого вакуума с разрешением 4.0 нм при 
ускоряющем напряжении 30 кВ и при увеличении от 5× до 2000× в пересчете на размер 
отпечатка 10 × 12 см.

1.8. Оценка влагопоглощения. Для анализа влагопоглощения гидрогелевые образ-
цы сушили в вакууме до постоянной массы. Взвешенные образцы гидрогеля помещали  
в 2.5–5 мл дистиллированной воды и через определенные промежутки времени определяли 
массу поглощенной воды.

1.9. Оценка устойчивости. Для оценки устойчивости использовали гидрогелевые об-
разцы без предварительного высушивания. Образец помещали в фосфатный буферный рас-
твор с рН 6.8, 7.2 и 7.4, приготовленный из соответствующего стандарт-титра, через сутки 
извлекали, удаляли излишки влаги фильтровальной бумагой, взвешивали и снова помещали 
в раствор. Измерения массы проводили через каждые сутки в течение 28 дней.

1.10. МТТ-тест. Образцы гидрогелей предварительно отмывали от остаточных моно-
меров хлороформом в аппарате Сокслета, высушивали, вымачивали в буферном растворе  
с pH 7.3 (с контролем постоянства значения pH) в течение нескольких суток. Оценку  
цитотоксичности образцов гидрогелей проводили с помощью МТТ-теста согласно  
ГОСТ Р ИСО 10993-5:2009 [20]. Для получения экстракта испытуемые образцы помещали 
в ростовую среду ДМЕМ/F12 с добавлением антибиотиков и 2 %-ной телячьей эмбриональ-
ной сыворотки и инкубировали в СО2-инкубаторе в течение 24 ч. Одновременно с нача-
лом экстракции клетки тестовой культуры – дермальные фибробласты человека – высевали  
с концентрацией 100 тыс. кл/мл на лунки 96-луночного планшета в полной ростовой сре-
де (среда ДМЕМ/F12 с добавлением антибиотиков пенициллин/стрептомицин, глутамина  
и 10 %-ной телячьей эмбриональной сыворотки) и культивировали в СО2-инкубаторе в те-
чение 24 ч. Культуры были получены и охарактеризованы в лаборатории биотехнологий  
ФГБОУ ВО «Приволжский исследовательский медицинский университет». Метод полу-
чения культур подробно описан в работе [21]. Полученные экстракты разводили ростовой 
средой в соотношениях 1:1; 1:2; 1:4; 1:8. Затем экстракты и их разведения раскапывали 
на подготовленную тестовую культуру в плоскодонном 96-луночном планшете, по 8 лунок 
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каждый. Через 72 ч культивирования с экстрактами оценивали состояние культуры на по-
верхности опытных и контрольных лунок с помощью инвертированного микроскопа Leica 
DMI 3000 B c программным обеспечением LAS v. 4.3 (Leica Microsystems, Германия). Затем 
в каждую лунку вносили 20 мкл раствора 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-тетраз-
олиум бромида и снова помещали планшет в СО2-инкубатор. Спустя 3 ч отбирали суперна-
тант, замещали на равный объем раствора диметилсульфоксида и регистрировали оптиче-
скую плотность (А, отн. ед) при 540 нм на анализаторе INFINITI F50 (Tecan Austria GmbH, 
Австрия). Цитотоксичность суточного экстракта и его разведений в сравнении с контроль-
ными образцами оценивали колориметрически по относительной интенсивности роста 
(ОИР) клеток тестовой культуры.

где  – средняя оптическая плотность.
Для оценки цитотоксичности были выделены следующие ранги: ранг 0 (ОИР = 100 %) 

и ранг 1 (ОИР = 99–70 %), соответствующие отсутствию цитотоксичности, ранг 2 (ОИР = 
69–50 %), ранг 3 (ОИР = 49–25 %) и ранг 4–5 (ОИР = 24–0 %), отвечающие легкой, средней 
и выраженной степеням цитотоксичности, соответственно.

1.11. Бактерицидную активность определяли по отношению к ассоциации тест-куль-
тур бактерий Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa и Bacillus 
subtilis. Наличие бактерицидных свойств устанавливали по величине зоны ингибирования 
роста бактерий вокруг исследуемого объекта, помещенного на агаризованную среду МПА. 
Условия культивирования – термостатирование при 37 °С в течение 24 ч.

1.12. Грибостойкость. Испытания на грибостойкость проводили по ГОСТ 9.049-91 [22]. 
В качестве тест-культур использованы микроскопические грибы – активные деструкторы 
полимерных материалов: Aspergillus niger, Aspergillus terreus, Aspergillus oryzae, Chaetomium 
globosum, Paecilomyces variotii, Penicillium funiculosum, Penicillium chrysogenum, Penicillium 
cyclopium, Trichoderma viride. Образцы испытуемого материала помещали в чашки Петри 
и инокулировали суспензией ассоциации спор тест-культур грибов, после чего помещали в 
термостат на 28 сут при температуре 29 ± 2 °С и влажности ≥ 90 %. Материал считали гри-
бостойким, если он получал оценку 0–1 балл.

2. Результаты и их обсуждение

Для реализации первого подхода, связанного с увеличением концентраций исходных 
веществ, в синтезе сополимеров использовали уксуснокислую дисперсию, содержащую 
0.75 г коллагена, 0.75 г пектина, 1.5 г ММА и 0.25 г ТЭБ-ГМДА. Увеличение концентра-
ции природных полимеров и мономера с 2.5 [15] до 5 % является достаточно эффективным 
для получения однородной дисперсии сополимера коллаген–пектин–ММА как при ком-
натной (СПЛ-1) (рис.1, а), так и при повышенной температуре синтеза (СПЛ-2) (рис.1, б). 
Для сопоставления важных для скаффолдов свойств гидрогелей с включенным синтетиче-
ским фрагментом ПММА получены образцы сополимера коллаген–пектин в присутствии  
ТЭБ-ГМДА, но без добавления ММА (СПЛ-3). Дисперсия сополимера коллаген–пектин 
при температуре синтеза 70 °С совершенно иного цвета (рис. 1, в).
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Рис. 1. Фото дисперсий сополимеров СПЛ-1 (а), СПЛ-2 (б) и СПЛ-3 (в)
Fig. 1. Photos of copolymer dispersions SPL-1 (a), SPL-2 (b), and SPL-3 (c)

Влияние добавок на структуру и свойства сополимеров контролировали по физико-хи-
мическим характеристикам. Исследование содержания азота в полимерном продукте, вы-
деленном из водной фазы синтеза, свидетельствует о том, что коллаген входит в состав 
сополимера, причем его содержание в сополимерах варьируется в зависимости от условий 
получения (рис. 2). Так, для сополимеров коллаген–пектин–ММА СПЛ-1 и СПЛ-2, отлича-
ющихся температурой синтеза, массовые доли азота и коллагена близки по значениям, но 
они практически в два раза ниже, чем для сополимера СПЛ-3, не содержащего ПММА, что 
вполне логично.

Рис. 2. Содержание азота и коллагена в образцах согласно данным элементного анализа
Fig. 2. Nitrogen and collagen content in the samples according to elemental analysis data

Интересная информация о морфологии лиофильно высушенных сополимеров получена с 
помощью СЭМ (рис. 3). Если для СПЛ-1, полученного при комнатной температуре, харак-
терна ажурная морфология поверхности (рис. 3, в), которая ближе к таковой для пектина 
(рис. 3, б), то для СПЛ-2 (рис. 3, г) наблюдается волокнообразное строение поверхности, 
но с элементами в виде мелких ответвлений, характерных для пектина. Эти различия, веро-
ятно, связаны с известными изменениями строения природных полимеров при повышении 
температуры. При этом размеры пор для СПЛ-1 (рис. 3, в) и СПЛ-2 (рис. 3, г) сопоставимы. 
Совершенно иная морфология у сополимера коллаген–пектин СПЛ-3 (рис. 3, д), который 
представляет собой хаотически сшитый образец с размером пор широкого диапазона.



Yu.L. Kuznetsova et al. | Synthesis and properties of hydrogels…576

Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki | 2025;167(4):569–589

Рис. 3. СЭМ-изображения лиофильно высушенных образцов коллагена (а), пектина (б), сополимеров 
СПЛ-1 (в), СПЛ-2 (г), СПЛ-3 (д)
Fig. 3. SEM images of the freeze-dried samples of collagen (a), pectin (b), and copolymers SPL-1 (c),  
SPL-2 (d), and SPL-3 (e)

Введение п-хинонов совместно с борорганическими соединениями в состав реакционной 
смеси с акриловыми мономерами также позволило получить однородные дисперсии сопо-
лимера коллаген–пектин–ММА даже при концентрации природных полимеров 2–2.5 % [15].  
Вероятно, это связано с тем, что хиноны способствуют снижению молекулярной массы 
акрилового фрагмента [16, 23, 24], поэтому в настоящем исследовании в синтезе сополи-
меров коллагена–пектина–ММА использованы п-хиноны различного строения: бензохинон 
(БХ), метил-бензохинон (МБХ), 2,6-диметокси-бензохинон (2,6-ДМОБХ), 2,5-ди-трет- 
бутил-бензохинон (2,5-ДТББХ) и дурохинон (ДХ). Предполагается следующая схема обра-
зования сополимера. При добавлении ТЭБ-ГМДА в уксуснокислую дисперсию высвобо-
ждается ТЭБ из комплекса (схема 1), который борирует коллаген (схема 2) или пектин.

Борирование осуществляется за счет взаимодействия ТЭБ по гидроксильным группам 
природных полимеров (схема 2, направление I) по известной реакции, катализатором кото-
рой выступают карбоновые кислоты [25]. В этом случае группа OBEt2 располагается при 
вторичном атоме углерода. Поскольку невозможно полностью исключить присутствие кис-
лорода в реакционной массе, и ввиду исключительной чувствительности борорганических 
соединений к кислороду, реализуется также и направление II (схема 2), которое связано  
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с окислением ТЭБ, приводящим к образованию радикалов Et•, EtO•, Et2BO• и др. [26]. 
Этокси-радикалы отрывают атом водорода от третичного атома углерода природного по-
лимера [27], а образующийся третичный макрорадикал рекомбинирует с бороксильными 
радикалами. Подобные реакции подтверждены методом ЭПР-спектроскопии для гомопо-
лимеризации акриловых мономеров в присутствии системы алкилборан–кислород [28]. 
Фрагменты трет.С-OBEt2, образующиеся за счет направления II (схема 2), являются ини-
циаторами привитой полимеризации (схема 3), а фрагменты втор.С-OBEt2, образующиеся 
за счет направления I (схема 2), выступают передатчиками цепи (схема 4), обрывающими 
материальную цепь.

Таким образом, борированный природный полимер позволяет осуществлять прививку 
синтетического полимера двумя путями: «grafting from» (схема 3) и «grafting to» (схема 4), 
что приводит к образованию сополимера сшитой структуры.

Введение в реакционную массу п-хинона добавляет стадию взаимодействия п-хинона с 
радикалом роста (схема 5) и последующее радикальное замещение на борированном при-
родном полимере (схема 6).



Yu.L. Kuznetsova et al. | Synthesis and properties of hydrogels…578

Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki | 2025;167(4):569–589

Превращения с участием п-хинона позволяют регулировать молекулярную массу при-
витого ПММА в зависимости от строения п-хинона.

Для оценки влияния строения п-хинона на конверсию ММА и молекулярно-массовые 
характеристики привитого ПММА синтез сополимеров проводили при 60 °С в уксусно-
кислой дисперсии, содержащей 1 % коллагена и 1 % пектина (2 % природных полимеров),  
к которой прибавляли ТЭБ-ГМДА, а затем ММА с растворенным в нем п-хиноном. По окон-
чании синтеза в реакционной колбе наблюдали бесцветную однородную дисперсию, более 
вязкую по сравнению с исходной дисперсией коллагена и пектина. Анализ конечных про-
дуктов показал, что введение п-хинона снижает конверсию мономера (табл. 1) по сравне-
нию с сополимерами коллагена и ММА, синтезированными без хинона [16]. Минимальная 
конверсия наблюдается в случае самого сильного ингибитора – БХ. Для остальных п-хино-
нов не прослеживается строго соответствия ингибирующего действия и конверсии.

Органическую часть из дисперсии после синтеза экстрагировали хлороформом. В хло-
роформенных вытяжках не был обнаружен гомополимер ПММА, следовательно, весь про-
реагировавший ММА входил в состав сополимера. Лиофильно высушенные сополимеры 
обрабатывали последовательно ферментами коллагеназой, а затем пектиназой для удаления 
фрагментов природных полимеров и анализировали оставшийся синтетический полимер. 
Как показал анализ ГПХ, введение п-хинонов в синтез сополимеров значительно снижа-
ет молекулярные массы привитого ПММА в сравнении с таковым без хинона (табл. 1),  
что обусловлено эффективной передачей цепи за счет системы алкилборан – п-хинон [29]. 
Снижение полидисперсности, вероятно, связано с протеканием контролируемой полиме-
ризации, которая характерна для этой системы [30]. Результаты анализа синтетического 
фрагмента сополимеров показали, что молекулярно-массовые характеристики зависят и от 
строения использованного п-хинона. Так, в случае более сильных ингибиторов (БХ, МБХ и 
2,6-ДМОБХ) молекулярные массы значительно ниже, а полидисперсность выше, чем в слу-
чае наиболее слабых ингибиторов (2,5-ДТББХ и ДХ). Это свидетельствует о том, что доля 
контролируемой полимеризации, видимо, в случае слабых ингибиторов выше, что согласу-
ется с данными, полученными при изучении гомополимеризации ММА [31] и сополимери-
зации коллагена и ММА [16] в присутствии системы алкилборан–п-хинон.
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Табл. 1. Конверсия ММА и молекулярно-массовые характеристики сополимеров коллаген– 
пектин–ММА, синтезированных из 0.12 г ТЭБ-ГМДА, 0.3 г коллагена, 0.3 г пектина, 0.6 г ММА и 
0.0016 г БХ, 0.0025 г ДХ, 0.0033 г 2,5-ДТББХ, 0.0018 г МБХ или 0.0025 г 2,6-ДМОБХ (* – данные из 
работы [27])
Table 1. MMA conversion and molecular weight characteristics of collagen–pectin–MMA copolymers  
synthesized from 0.12 g TEB-HMDA, 0.3 g collagen, 0.3 g pectin, 0.6 g MMA, as well as 0.0016 g BQ, 
0.0025 g DQ, 0.0033 g 2,5-DTBBQ, 0.0018 g MBQ, or 0.0025 g 2,6-DMOBQ (* – data from [27])

Хинон Конверсия 
ММА, %

Молекулярно-массовые характеристики привитого ПММА
Mn×10−3 Mw×10−3 Mw/Mn

—* 100 214.0 570.0 2.7
БХ 87.2 2.5 4.7 1.9

МБХ 96.1 1.3 2.9 2.2
2,6-ДМОБХ 94.7 2.6 4.3 1.7
2,5-ДТББХ 98.2 67.0 110.0 1.6

ДХ 90.7 78.9 100.2 1.3

Морфология полученных лиофильно высушенных образцов сополимеров (рис. 4)  
отличается от морфологии исходных коллагена и пектина (рис. 3, а и б соответственно)  
и представляет собой сложную суперпозицию фрагментов полимеров, входящих в их со-
став. Очевидно, что природа хинона также оказывается влияние на морфологию поверхно-
сти, что демонстрирует рис. 4, а–д.

Рис. 4. СЭМ-изображения лиофильно высушенных образцов сополимеров коллаген–пектин–ММА, 
синтезированных в присутствии п-хинонов: БХ (а), МБХ (б), 2,6-ДМОБХ (в), 2,5-ДТББХ (г), ДХ (д)
Fig. 4. SEM images of the freeze-dried samples of collagen–pectin–MMA copolymers synthesized in the 
presence of p-quinones: BQ (a), MBQ (b), 2,6-DMOBQ (c), 2,5-DTBBQ (d), and DQ (e)

Таким образом, строение п-хинона не оказывает заметного влияния на конверсию моно-
мера, а молекулярные массы синтетического фрагмента возможно контролировать за счет 
используемых п-хинонов.
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Разработанные методики синтеза сополимеров были положены в основу создания мате-
риалов для регенеративной медицины. С целью повышения их структурной устойчивости в 
состав исходной смеси для получения гидрогелей вводили незначительные количества глу-
тарового альдегида, являющегося эффективным сшивающим агентом для белков [32, 33]. 
Разработанная методика использована для синтеза гидрогелей коллаген–пектин (СПЛ-3Г), 
коллаген–пектин–ММА при комнатной температуре (СПЛ-1Г) и 70 °С (СПЛ-2Г), содержа-
щих 5 % природных полимеров и 5 % ММА, а также с введением п-хинонов (БХГ, МБХГ, 
2,6-ДМОБХГ, 2,5-ДТББХГ и ДХГ) при 60 °С в дисперсии, содержащей 6 % природных по-
лимеров и 6 % ММА. Для всех образцов оценивали влагопоглощение и структурную устой-
чивость – параметры, необходимые для последующей оценки цитотоксичности. Влагопо-
глощение составляет ≥ 400 % от исходной массы сухого образца (рис. 5, а).

Рис. 5. Влагопоглощение лиофильно высушенных гидрогелей коллаген–пектин–ММА: СПЛ-1Г (1);  
2,5-ДТББХГ (2); 2,6-ДМОБХГ (3); ДХГ (4); БХГ (5); СПЛ-2Г (6); СПЛ-3Г (7); МБХГ (8) (а) и 
устойчивость гидрогелей коллаген–пектин–ММА, содержащих БХГ (1), 2,5-ДТББХГ (2), ДХГ (3),  
МБХГ (4), 2,6-ДОМБХГ (5), в буферном растворе (m0 – исходная масса гидрогеля, m – масса 
гидрогеля в момент времени) (б)
Fig. 5. Moisture absorption of freeze-dried collagen–pectin–MMA hydrogels: SPL-1G (1); 2,5-DTBBQG (2);  
2,6-DMOBQG (3); DQG (4); BQG (5); SPL-2G (6); SPL-3G (7); MBQG (8) (а) and stability of collagen–
pectin–MMA hydrogels containing BQG (1), 2,5-DTBBQG (2), DQG (3), MBQG (4), 2,6-DMOBQG (5) 
in buffer solution (m0 is the initial mass of hydrogel, m is the mass of hydrogel at certain time point) (b)

Наилучшее влагопоглощение демонстрирует гидрогель, полученный при добавлении в 
реакционную смесь МБХГ. Такой результат, вероятно, обусловлен самой низкой молекуляр-
ной массой привитого гидрофобного ПММА (табл. 1). Все образцы успешно прошли ис-
пытания на структурную устойчивость при центрифугировании образцов в течение 30 мин 
при комнатной температуре в буферных растворах с pH 6.8 и 7.2 путем визуальной оценки 
целостности формы образцов по методике [34].

Поскольку стабильность гидрогелей как материалов для регенерации ткани является од-
ним из ключевых свойств, оценено изменение массы сополимеров с хинонами в буферном 
растворе с рН 7.4 в течение 30 сут (рис. 5, б). Потеря массы составляет 30 % от исходной 
массы гидрогеля для MБХГ и 2,6-ДМОБХГ и 40 % для остальных образцов с п-хинонами. 
Наименьшая устойчивость наблюдается у образца МБХГ. Разрушение образцов связано, ви-
димо, с вымыванием части природных полимеров.

Оценены биомедицинские характеристики (цитотоксичность и грибостойкость) образца 
СПЛ-2Г, поскольку, с одной стороны, остатки борсодержащего инициатора могут быть при-
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чиной токсичности гидрогелей, а с другой стороны, могут оказывать подавляющее действие 
на рост плесневых грибов и бактерий. Установлено, что цитотоксичность образца СПЛ-2Г 
(суточный экстракт и его разведения) соответствуют рангу 0–1 (табл. 2). Следует отметить, 
что при разведениях экстракта 1 : 2 – 1 : 8 наблюдается незначительная стимуляция роста 
клеток, о чем свидетельствует повышение ОИР в ~1.2 раза по сравнению с контрольным 
опытом. Это может быть обусловлено известным в биологии эффектом малых доз, заклю-
чающемся в различном характере воздействия малой дозы и концентрата вещества на био-
логические объекты.

Табл. 2. Цитотоксичность суточного экстракта образца СПЛ-2Г и его разведений относительно 
клеток дермальных фибробластов человека
Table 2. Сytotoxicity of the one-day extract of sample SPL-2G and its dilutions in relation to human dermal 
fibroblasts

Серия (n = 8) А, отн. ед. ОИР, % Уровень 
цитотоксичности

Контроль 0.54 ± 0.01 100 0
Экстракт 0.418 ± 0.006* 77 1

Экстракт 1 : 1 0.544 ± 0.005 100 0
Экстракт 1 : 2 0.64 ± 0.02* 117 0
Экстракт 1 : 4 0.64 ± 0.02* 118 0
Экстракт 1 : 8 0.65 ± 0.02* 119 0

*р < 0.05 критерий Вилкоксона

Микроскопические исследования демонстрируют наличие на поверхности пластика во 
всех лунках плотного монослоя, сформированного веретеновидными клетками с выражен-
ными отростками и четкими контурами (рис. 6). Микроскопическая картина согласуется с 
результатами колориметрического анализа.

Биоцидная активность пленочных материалов обеспечивает безопасность их исполь-
зования, так как предотвращает размножение бактерий на материале. Грибостойкость по-
лимерной пленки отражает устойчивость материала к биоповреждениям, то есть способ-
ность сопротивляться воздействию грибов-деструкторов, которые используют материал в 
качестве источника питания. Однако при наличии внешних загрязнений, поддерживающих 
рост грибов-деструкторов, продукты жизнедеятельности микромицетов способны оказы-
вать негативное, разрушающее воздействие на материал. Результаты испытаний показали, 
что образцы СПЛ-2Г проявляют бактерицидность по отношению к ассоциации тест-куль-
тур Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, зона 
ингибирования роста которых составляет 18 мм. Установлены грибостойкие свойства ги-
дрогелей СПЛ-2Г. Рост грибов на всех вариантах образцов не обнаружен, то есть оценка 
роста составляет 0 баллов. Таким образом, разработанные составы гидрогелей могут быть 
использованы в качестве грибостойких и бактерицидных материалов.



Yu.L. Kuznetsova et al. | Synthesis and properties of hydrogels…582

Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki | 2025;167(4):569–589

Рис. 6. Состояние культуры дермальных фибробластов человека после культивирования с суточным 
экстрактом образца СПЛ-2Г: контрольный опыт (а), экстракт (б) и разведения 1 : 1 (в), 1 : 2 (г),  
1 : 4 (д), 1 : 8 (е)
Fig. 6. Condition of the cell culture of human dermal fibroblasts after cultivation with the one-day extract 
of  sample SPL-2G: control (a), extract (b), and dilutions 1 : 1 (c), 1 : 2 (d), 1 : 4 (e), and 1 : 8 (f)

Заключение

Разработаны условия получения однородных гидрогелей на основе сополимеров колла-
ген–пектин–ММА с использованием двух подходов: повышения исходной концентрации при-
родных полимеров и введения п-хинонов совместно с борорганическими соединениями в со-
став реакционной смеси полимеризата, заметно влияющих на параметры процесса и свойства 
конечного продукта, благодаря участию в стадиях полимеризации. Проведен анализ их физи-
ко-химических свойств (молекулярно-массовые параметры, морфология, состав и структура). 
Новые гидрогели обладают рядом необходимых и востребованных характеристик, в частно-
сти, отсутствием цитотоксичности, биоцидными свойствами, что позволяет рассматривать их 
как перспективные материалы для использования в скаффолд-технологиях.
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Аннотация

Методом сканирующей электронной микроскопии исследована геометрия и структура полово-
локонной мембраны, полученной из полисульфона методом сухо-мокрой инверсии фаз. Рассмотрена 
возможность использования различных аминных отвердителей и бифункционального полиэфира-
мина в композициях герметизирующих составов. Проведена герметизация полученных половоло-
конных мембран в модельные мембранные модули эпоксидными герметизирующими составами, 
которые отличаются отвердителями. По наличию дефектов, возникающих при подаче газов под дав-
лением в месте контакта половолоконная мембрана–эпоксидный состав, оценена практическая при-
менимость этих материалов. Использование полиэфирамина в качестве аминного отвердителя эпок-
сидных систем не приводит к образованию дефектов в месте контакта половолоконных мембран и 
эпоксидного состава при подаче давления вплоть до 0.5 атм и позволяет достичь высоких значений 
селективности по паре газов He/N2 для получаемых модельных мембранных модулей.

Ключевые слова: половолоконные мембраны, мембранный модуль, герметизация, полисуль-
фон, эпоксидные составы, селективность, газоразделение.
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Abstract

The geometry and structure of hollow fiber membranes fabricated from polysulfone by the dry-wet  
phase inversion method were studied with the help of scanning electron microscopy. Various amine 
hardeners and difunctional polyetheramines were analyzed as potential components of sealing compounds. 
The fabricated hollow fiber membranes were sealed in model membrane modules using epoxy sealing 
compounds with different hardeners. The applicability of these materials was assessed based on the presence 
of defects when gases were supplied under pressure at the contact point between the membrane and the 
epoxy. The use of polyetheramine as an amine hardener for the epoxy systems caused no defects at the point 
of contact between the hollow fiber membranes and the epoxy compound, even when pressures up to 0.5 atm 
were applied. This ensures high selectivity values for the He/N2 gas pair in the resulting membrane modules.

Keywords: hollow fiber membranes, membrane module, sealing, polysulfone, epoxy compounds, 
selectivity, gas separation
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Введение

Половолоконные мембраны, впервые разработанные в 1960-х годах для процесса об-
ратного осмоса, широко используются в настоящее время для фильтрационного разделения 
жидких и газовых сред [1, 2]. Одним из ключевых преимуществ половолоконных мембран 
по сравнению с плоскими или трубчатыми конфигурациями является высокая плотность 
упаковки полых волокон в модуле, которая может достигать 10000 м2/м3 и более [1]. Это 
обеспечивает высокую удельную производительность единицы объема аппарата.

Герметизация торцов мембранных модулей на основе половолоконных мембран являет-
ся одной из важнейших операций при их изготовлении. Для этих целей используют различ-
ные герметизирующие составы, призванные обеспечить фиксацию мембранного материала 
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внутри корпуса мембранного модуля. К таким составам предъявляются следующие требо-
вания: непроницаемость для газов и жидкостей герметизируемых изделий, смачивание ма-
териалов мембраны и корпуса модуля, адгезия к материалу корпуса и мембраны, низкая 
усадка при отверждении, механическая прочность, теплостойкость, определенная эластич-
ность и др. [3, 4].

В качестве основы современных полимерных герметизирующих составов используют 
эпоксидные смолы, полиэфиры, полиуретаны, силиконовые каучуки [5], акриловые гермети-
ки (чаще всего полиметилметакрилаты), термопласты (полиолефины, полиэтилены [6], сопо-
лимеры полиолефинов, полиамиды, полистиролы, поливинилхлориды), полисульфиды [7].  
Герметики также могут содержать теплопроводящие наполнители для улучшения теплоот-
вода при отверждении, пластификаторы, отвердители, модификаторы и др. [8]. Чаще всего 
для герметизации полых волокон применяют эпоксидные смолы. Они изначально находятся 
в форме низковязкой жидкости, которая способна затекать в межволоконное пространство 
и в поверхностные поры волокна с образованием прочной связи после отверждения мате-
риала герметика, происходящего под действием тех или иных веществ (отвердителей) и, 
зачастую, температуры. Этот тип герметизирующих составов обладает высокими механи-
ческими, адгезионными, электроизоляционными характеристиками, небольшой усадкой и 
способностью отверждаться практически без выделения летучих веществ [9].

В эпоксидных системах используют ангидридные, аминные, амидные отвердите-
ли и др., причем чаще выбирают ангидридные и аминные. Ангидридные отвердители, 
такие как малеиновый ангидрид [10], изометилтетрагидрофталевый ангидрид [11], ме-
тилэндиковый ангидрид [12] и др. относятся к так называемым отвердителям «горяче-
го» отверждения. Их преимуществом по сравнению с аминными отвердителями являет-
ся универсальность (возможность отверждать практически любую эпоксидную смолу), 
меньшая токсичность, большая жизнеспособность эпоксиангидридных систем при ком-
натной температуре. Однако отверждение эпоксидных систем этим типом соединений 
часто является весьма длительным процессом, который протекает при повышенных тем-
пературах. С целью сокращения времени отверждения используют ускорители, такие как 
кислоты [13] и основания [14] Льюиса, аминофенолы и их соли [15] и др., среди которых 
наиболее широко применяют третичные алифатические амины [16]. Однако они проявля-
ют токсичные свойства. Другой важной группой отвердителей являются вещества, содер-
жащие первичные и/или вторичные аминогруппы. К ним можно отнести алифатические 
(диэтилентетрамин, триэтилентетрамин (ТЭТА) [17], полиэтиленполиамин (ПЭПА) [18] 
и др.), ароматические (4,4ꞌ-диаминодифенилсульфон [19], 4,4ꞌ-диаминодифенилметан [20] 
и др.), алициклические (изофорондиамин (ИФДА) [21] и др.), гетероциклические амины 
(N-(аминоэтил)пиперазин [22]) и др. Представители этой группы отвердителей также яв-
ляются токсичными. Алифатические амины характеризуются наибольшей реакционной 
способностью, обеспечивающей проведение отверждения при комнатной температуре.

Отверждение эпоксидных смол – это часто экзотермический процесс. При больших объ-
емах заливки и с учетом низкой теплопроводности эпоксидной смолы разогрев реакционной 
массы может быть значительным, что способно привести к большим внутренним напряже-
ниям, которые, в свою очередь, могут повлечь растрескивание заготовки и повреждение 
половолоконных мембран. После отверждения эпоксидного связующего производят отрез 
части отвержденного герметика с формированием торца мембранного модуля. При этой 
операции может происходить повреждение части полых волокон вследствие слишком вы-
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сокой жесткости отвержденного материала. К другим недостаткам эпоксидных компаундов 
можно отнести низкие ударные характеристики и недостаточную трещиностойкость [23].  
Одним из решений этих проблем может быть замедление отверждения или повышение те-
плопроводности системы. Для этих целей могут быть использованы полиэфирамины, по-
зволяющие проводить отверждение при комнатной температуре и обладающие меньшей 
токсичностью и реакционной способностью по сравнению со стандартно используемыми 
алифатическими аминными отвердителями.

Таким образом, задача разработки заливочного компаунда на основе эпоксидных систем 
для герметизации мембранных модулей сводится к модификации эпоксидных связующих, 
в том числе, за счет подбора отверждающей системы. Цель работы состоит в разработке 
компаундов на основе эпоксидных систем для герметизации половолоконных мембран из 
полисульфона (ПСФ) в мембранном модуле. ПСФ является одним из наиболее часто ис-
пользуемых коммерческих мембранных материалов, что обусловлено его низкой стоимо-
стью, высокой термической и механической стабильностью, а также высокой химической 
стойкостью [24].

1. Материалы и методы

1.1. Материалы. В работе использовали эпоксидную смолу ЭД-22 (АО «Химэкс Лими-
тед», Россия). Для отверждения применяли аминные отвердители: ТЭТА, ПЭПА, Л-20М, 
ИФДА, а также полиэфирамин Д-230 (ООО «СУПЕРПЛАСТ», Россия). Соотношение меж-
ду эпоксидной смолой и отвердителями соответствовало стехиометрии отверждения. Пока-
затели вязкости при 25 °С всех представленных выше компонентов согласно данным про-
изводителя составляют 11 и 7 Па×с для ЭД-22 и Л-20М, 14, 250, 15 и 12 мПа×с для ТЭТА, 
ПЭПА, ИФДА и Д-230 соответственно.

Для изготовления половолоконных мембран использовали ПСФ в гранулах марки 
Ultrason® S 6010 (BASF, Германия) и 99 %-ный (EP) N-метил-2-пирролидон (Acros Organics, 
Бельгия) в качестве основного полимера и растворителя соответственно.

1.2. Получение половолоконных мембран. Перед формованием половолоконной 
мембраны полимерный раствор фильтровали под давлением азота 1.8–2.0 бар через сетку 
из нержавеющей стали с ячейкой 4–5 мкм. После процедуры фильтрации раствор полимера 
охлаждали до комнатной температуры и дегазировали в течение ночи под вакуумом.

Половолоконные мембраны из ПСФ получали на исследовательской установке [25] ме-
тодом сухо-мокрой инверсии фаз в варианте «свободного прядения», при котором сформо-
ванное полое волокно под действием силы тяжести поступает в приемную ванну с водой.  
В качестве внутреннего осадителя выступала дистиллированная вода. Для получения по-
лых волокон использовали кольцевую формовочную фильеру с внешним и внутренним ди-
аметрами 0.5 и 0.3 мм соответственно. В качестве исходных параметров формования были 
выбраны давление над раствором 200 кПа, расход внутреннего осадителя 0.45 мл/мин, воз-
душный зазор 0.5 м. После формования образцы половолоконных мембран помещали в 
воду на 5 дней, после чего в течение 24 ч сушили на воздухе при комнатной температуре и 
относительной влажности 60 %.

1.3. Методы исследования мембран. Геометрию и структуру полученных полово-
локонных мембран из ПСФ исследовали методом сканирующей электронной микроскопии 
(СЭМ) на микроскопе Hitachi Tabletop TM 3030 Plus с высокочувствительным низковакуум-
ным детектором вторичных электронов (Hitachi High Technologies Corporation, Япония). 
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Сколы образцов получали в атмосфере жидкого азота, затем на них наносили слой золота 
при помощи напылителя DSR-1 (NSC, Иран), толщина которого составляла 50–100 Å.

1.4. Герметизация половолоконных мембранных модулей. Для приготовления 
эпоксидных систем все компоненты перед смешением выдерживали в вакуумном шкафу 
в течение 1 ч при 50 °С для удаления воды и других летучих примесей. Смешение ком-
понентов проводили при комнатной температуре в течение 10 мин на магнитной мешалке  
IKA C-MAG HS 7 (IKA, Германия), после чего все смеси дегазировали в вакуумном шкафу 
в течение 10 мин при 25 °С. Отверждение проводили в течение 24 ч при 25 °С, что соответ-
ствует рекомендациям по использованию указанных отвердителей.

Оценку качества герметизации места контакта герметизирующего состава и половоло-
конных мембран проводили путем изготовления модельных мембранных модулей, состоя-
щих из 10 половолоконных мембран на основе ПСФ (рис. 1, а), при использовании различ-
ных эпоксидных составов. Полученные модули присоединяли к системе подаче газа (азот) 
через цанговый соединитель трубок и погружали в стакан с водой таким образом, чтобы 
место контакта компаунда и половолоконных мембран оказалось под водой. Качество гер-
метизации оценивали при давлениях 0.1–0.5 бар по наличию и количеству пузырей газа, 
появляющихся в воде (рис. 1, б).

Рис. 1. Фотографии модельных мембранных модулей, используемых для оценки качества 
герметизации (а), и испытания совместимости эпоксидных составов и полых волокон из ПСФ (б)
Fig. 1. Photographs of the model membrane modules used to assess the quality of sealing (a) and to test the 
compatibility of epoxy compounds and hollow fibers from PSF (b)

1.5. Оценка газотранспортных свойств мембранных модулей. Для мембранных 
модулей, прошедших проверку на совместимость эпоксидного состава и половолоконных 
мембран, проводили оценку газотранспортных свойств волюметрическим методом с ис-
пользованием индивидуальных газов (N2, He) при температуре 25 °C и давлении до 6.5 бар.

Расчет проницаемости проводили по уравнению 1

						      (1)

где Р – коэффициент проницаемости по индивидуальному газу, (л×м)/(м2×ч×бар), l – толщи-
на разделяющего слоя мембраны, м, Q – объемный расход газа, который прошел через мем-
брану, м3/ч, p – трансмембранное давление, бар, S – площадь поверхности мембраны, м2.
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Идеальную селективность α по паре газов Не/N2 рассчитывали по уравнению 2

					     (2)

1.6. Статистическая обработка результатов. При определении проницаемости и иде-
альной селективности проводили пять независимых испытаний. Результаты представляли 
как среднее значение и стандартное отклонение, рассчитанные с помощью программного 
пакета Excel (Microsoft Corp., США).

2. Результаты и их обсуждение

2.1. Половолоконные мембраны из ПСФ. Микрофотография изготовленной из ПСФ 
половолоконной мембраны, полученная с помощью СЭМ, представлена на рис. 2. Внешний 
диаметр мембраны составляет 300 мкм, а толщина стенки – 80 мкм.

Рис. 2. СЭМ микрофотография исследуемой половолоконной мембраны из ПСФ
Fig. 2. SEM micrograph of the investigated hollow fiber membrane from PSF

2.2. Оценка совместимости эпоксидных систем и половолоконных мембран  
из ПСФ. Герметизация с использованием исследуемых составов на основе эпоксидной смо-
лы ЭД-22 и различных аминных отвердителей приводит к повреждению половолоконных 
мембран, о чем свидетельствует наличие большого количества пузырей в месте контакта 
половолоконных мембран и эпоксидных составов (табл. 1). Только в случае применения в 
качестве отвердителя полиэфирамина Д-230 при подаче давления до 0.5 атм внутрь модель-
ного мембранного модуля дефекты отсутствуют. Можно предположить, что меньшая актив-
ность полиэфирамина в реакции отверждения по сравнению с аминными отвердителями 
и, соответственно, более долгий период времени до желатинизации обеспечивает возмож-
ность устранения части дефектов. Таким образом, возможна дальнейшая оценка селектив-
ности половолоконных мембранных модулей, в которых используется герметизирующий 
состав на основе эпоксидной смолы ЭД-22 и отвердителя Д-230.
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Табл. 1. Результаты оценки дефектов в месте контакта эпоксидных составов и половолоконных 
мембран
Table 1. Assessment of defects at the point of contact between the epoxy compounds and the hollow fiber 
membranes

Эпоксидный состав Давление, атм Наличие дефекта

ЭД-22 + ТЭТА 0.1 +

ЭД-22 + ПЭПА 0.1 +

ЭД-22 + ИФДА 0.1 +

ЭД-22 + Л-20М 0.1 +

ЭД-22 + Д-230
0.1

0.5 −

На рис. 3 представлена СЭМ микрофотография половолоконных мембран из ПСФ в 
эпоксидной системе ЭД-22 + Д-230, подтверждающая совместимость половолоконной мем-
браны и этого герметизирующего состава. Создание модельных половолоконных модулей с 
герметизацией на основе эпоксидной смолы ЭД-22 и аминных отвердителей ТЭТА, ПЭПА, 
ИФДА, Л-20М требует дальнейшей модификации эпоксидных составов.

Рис. 3. СЭМ микрофотография половолоконных мембран из ПСФ в эпоксидной системе  
ЭД-22 + Д-230
Fig. 3. SEM micrograph of the hollow fiber membranes from PSF in the ED-22 + D-230 epoxy system

2.3. Оценка газотранспортных свойств половолоконных модулей. Оценку га-
зотранспортных свойств проводили для половолоконных модулей с герметизацией с ис-
пользованием состава из эпоксидной смолы ЭД-22 и аминного отвердителя Д-230. В табл. 2 
представлены газотранспортные свойства полученного модуля на основе полых волокон 
из ПСФ и эпоксидного состава ЭД-22 + Д-230. Для сравнения использован половолокон-
ный модуль с герметизацией эпоксидной системой ЭД-22 + ТЭТА, который имеет дефекты, 
выявленные в ходе предварительных испытаний. Близкие значения идеальных селектив-
ностей по паре газов Не/N2 для полученных газоразделительных мембранных модулей с 
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герметизацией системой ЭД-22 + Д-230 (49) и материала ПСФ (52) [26]) свидетельствуют 
об отсутствии дефектов у полученного мембранного модуля с рассматриваемой системой 
герметизации. Отсутствие селективности по паре газов Не/N2 для модуля с герметизацией 
системой ЭД-22 + ТЭТА подтверждают результаты предварительных испытаний и указы-
вают на наличие дефектов на месте стыка эпоксидного состава с полым волокном из ПСФ.

Табл. 2. Газотранспортные свойства модулей из полых волокон на основе ПСФ и различных 
герметизирующих составов
Table 2. Gas transport properties of the hollow fiber modules based on PSF and various sealing compounds

Эпоксидный состав
Проницаемость P/l, л/(м2×ч×бар) Идеальная селективность α

N2 Не Не/N2

ЭД-22 + ТЭТА 335 ± 30 535 ± 35 1.6 ± 0.3

ЭД-22 + Д-230 5.0 ± 0.4 245 ± 20 49 ± 2

Заключение

В работе исследована возможность использования различных эпоксиаминных составов 
в качестве герметизирующих при создании модельных половолоконных мембранных моду-
лей на основе половолоконной мембраны из полисульфона. Показано, что модули, для кото-
рых в качестве отвердителя выступал полиэфирамин, характеризуются отсутствием дефек-
тов и наибольшей идеальной селективностью по паре газов Не/N2. Разработанные модули с 
половолоконными мембранами из ПСФ могут применяться не только для выделения гелия, 
но и для извлечения водорода из газовых смесей, а также для получения технического азота 
из атмосферного воздуха.

Таким образом, для создания бездефектных модельных половолоконных мембранных 
модулей на основе половолоконной мембраны из полисульфона при использовании эпок-
сиаминных систем можно использовать аминные отвердители, обладающие меньшей реак-
ционной способностью по сравнению со стандартными отвердителями (такими как ТЭТА, 
ПЭПА, ИФДА). Дальнейшее развитие исследований может быть сфокусировано на исполь-
зовании активных разбавителей, уменьшающих скорость протекания реакции отверждения 
эпоксидных смол.
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Получение градиентных композиционных материалов на основе  
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Аннотация

Изучены возможности и преимущества 3D-печати градиентных материалов при создании сло-
истых композитов на основе АБС-пластика с добавками углеродных волокон (УВ) и наночастиц 
оксида железа (НЧ). Методом 3D-печати получены образцы с различным наполнением добавок, а 
также градиентный образец с постепенным изменением состава (содержание добавок, % (масс.)): 
30 УВ, 15 УВ, 0, 5 НЧ, 15 НЧ. Определены теплофизические, механические и магнитные свойства 
образцов, проанализировано влияние на них качественного и количественного состава. На осно-
ве 3D-моделирования и предварительного анализа межслойной адгезии показана необходимость 
наличия промежуточного слоя чистого полимера между слоями с УВ и НЧ. Выбраны параметры 
3D-печати и изготовлена деталь градиентного состава, используемая при создании промышленного 
робота. В целом, показано, что путем спланированного включения различных материалов или до-
бавок в определенные места в композите можно достичь уникальных комбинаций механических, 
термических и электрических свойств, адаптированных к конкретным применениям.

Ключевые слова: функционально-градиентный композит, АБС-пластик, углеродные волокна, 
магнитные наночастицы, 3D-печать, физико-механические свойства, теплофизические свойства, 
магнитная восприимчивость.
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Abstract

The benefits and advantages of using 3D gradient printing to create ABS plastic-based layered  
composites reinforced with carbon fibers (CF) and iron oxide nanoparticles (NP) were studied. Samples 
with different additive contents, as well as a gradient sample with a gradual change in composition (additive 
content, wt.%: 30 CF, 15 CF, 0, 5 NP, 15 NP), were 3D printed. The thermophysical, mechanical, and 
magnetic properties of all samples were determined, and the influence of both qualitative and quantitative 
composition on them was analyzed. Based on the 3D modeling and the preliminary analysis of interlayer 
adhesion, the need for an intermediate layer of pure polymer between the layers with CF and NPs was shown. 
Optimal 3D printing settings were selected, and a part with a gradient composition was manufactured and 
subsequently used to assemble an industrial robot. Overall, the results reveal that deliberate incorporation 
of various materials or additives into specific regions of a composite offers a way to realize unique 
combinations of its mechanical, thermal, and electrical properties, tailored to specific applications.

Keywords: functionally graded composite, ABS plastic, carbon fibers, magnetic nanoparticles,  
3D printing, physical and mechanical properties, thermophysical properties, magnetic susceptibility
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Введение

Разработка новых материалов и методов их получения является движущей силой про-
гресса в науке о материалах [1]. Среди новых решений в этой области можно выделить 
функционально-градиентные материалы (ФГМ) – класс материалов с пространственным 
изменением состава, что позволяет адаптировать их под специфические требования [2], 
благодаря тщательному подбору состава и технологии получения [3]. В природе у раз-
личных видов живых организмов в результате адаптации к окружающей среде появились 
свои уникальные ФГМ [4–6]. Сам термин «функциональный градиентный материал» был 
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введен в Японии в 1984 г. для теплоизоляционных материалов градиентной структуры [7]. 
Хотя активные разработки природоподобных ФГМ начались в 1972 г. [8], технологические 
ограничения замедлили работу [9]. В последнее время интерес к ФГМ растет, благодаря 
возможности создавать материалы с индивидуальными свойствами для высоких техноло-
гий, таких как аэрокосмическая отрасль и биоинженерия. Одним из перспективных путей 
получения ФГМ является аддитивное производство, методы которого эволюционирова-
ли от создания прототипов к производству готовых деталей. Функционально-градиент-
ное аддитивное производство (ФГАП) [10, 11] – это ориентированный на материалы про-
цесс, переходящий от программного моделирования к моделированию производства [12].  
Одно из направлений аддитивного производства – 3D-печать – обеспечивает эффективную 
платформу для создания сложных 3D-объектов из цифровых моделей [13, 14]. Этот ме-
тод использует гибкость производства и возможность пространственного распределения 
составов материалов [15, 16]. Метод экструзии также стал интересным для производства 
композиционных материалов, таких как армированные волокнами композиты [17, 18]. Тех-
нологии аддитивного производства позволяют контролировать плотность и направление 
осаждения материалов в сложном трехмерном распределении или комбинировать различ-
ные материалы для создания бесшовных структур [19]. Регулирование плотности в ФГАП 
способствует созданию легких конструкций с сохранением прочности [20, 21].

ФГАП основано на концепции мультиматериальности с использованием динамически 
составленных градиентов и сложной морфологии для управления геометрическим и мате-
риальным расположением различных фаз, что определяет функции и свойства конечного 
компонента [22, 23]. Основная цель ФГАП с несколькими материалами – улучшение меж-
фазной связи между разнородными материалами, чтобы добиться монолитного многослой-
ного дизайна. Это помогает избежать трещин, возникающих из-за поверхностного натяже-
ния в традиционном производстве, за счет внедрения дискретных изменений в структуру 
материалов [10]. Использование различных коэффициентов расширения в критических ме-
стах также уменьшает напряжения и улучшает распределение остаточных напряжений и 
механические свойства материала [24–26].

Разработка магнитных материалов на полимерной основе способствует повышению 
гибкости дизайна и расширяет возможности их применения в различных областях, включая 
робототехнику и интеллектуальные электронные системы. Магнитные материалы играют 
ключевую роль в проектировании современных роботов, обеспечивая повышение их функ-
циональной эффективности. Например, магнитное поле можно использовать в качестве бес-
контактного источника для управления движением и ориентацией магнитных материалов 
внутри конструкций, что приводит к заметным изменениям механических, электрических, 
тепловых и оптических свойств после выравнивания. Кроме того, системы со встроенны-
ми магнитными компонентами демонстрируют выдающиеся характеристики управляемого 
движения под воздействием внешнего магнитного поля и могут рассматриваться как пер-
спективное инженерное решение для имитации движений растений и животных. Однако 
введение магнитных компонентов в состав изделий не должно ухудшать их эксплуатаци-
онных характеристик. Использование «градиентного» подхода может позволить сохранить 
механические характеристики магнитного композита.

В настоящем исследовании рассмотрены возможности 3D-печати градиентных мате-
риалов путем разработки слоистых композитов с различными добавками, что позволяет 
стратегически внедрять материалы в определенные участки композита для достижения 
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уникальных механических, термических, магнитных и электрических свойств. Получены 
гранулы полиакрилонитрил–бутадиен–стирольного пластика (АБС), наполненные коротки-
ми углеродными волокнами (УВ) или наночастицами оксида железа (НЧ Fe3O4), из кото-
рых изготовлены нити для 3D-печати. Напечатаны градиентные образцы для исследования 
свойств материала, а также деталь, применимая в изготовлении промышленных роботов. 
Представлен анализ теплофизических, магнитных и механических свойств напечатанных 
градиентных материалов, полезный для понимания их потенциальных приложений и буду-
щих направлений дизайна материалов. Определены параметры технологического процесса 
производства изделия методом 3D-печати.

1. Материалы и методы

1.1. Объект исследования. Выбранный объект – пластина из градиентного полимер-
ного композита, изготовленная с помощью 3D-печати, что позволяет контролируемо рас-
пределять компоненты по толщине (рис. 1, а). Для оптимальных механических свойств и 
высокой жесткости на изгиб необходимо варьировать содержание углеродных волокон и 
магнитных частиц, создавая градиентное распределение от поверхностных к центральным 
слоям. Объект состоит из пяти слоев (рис. 1, б), где нижний слой представляет собой АБС, 
наполненный на 15 % магнитными НЧ. Следующий за ним слой – это АБС с содержанием 
магнитных НЧ 5 %. Средний слой состоит из чистого АБС. Затем следует слой АБС, арми-
рованного короткими УВ (15 % (масс.)). Верхний слой представляет собой АБС, армирован-
ный короткими УВ (30 % (масс.)). Такое сочетание составов улучшает прочностные харак-
теристики и устойчивость к деформациям: более высокое содержание УВ в поверхностных 
слоях увеличивает прочность и жесткость, а магнитные НЧ в нижних слоях улучшают вза-
имодействие с магнитными полями и устойчивость к внешним воздействиям, что в итоге 
создает изделие с оптимальными эксплуатационными характеристиками и повышенным 
сроком службы.

Рис. 1. Объект исследования (а) и распределение в нем градиента по слоям (б)
Fig. 1. The sample under study (a) and the gradient distribution in its layers (b)

1.2. Исследуемые материалы. Для подготовки композитных нитей к 3D-печати ис-
пользовали гранулы АБС марки Ultramid с размером частиц 3 мм и плотностью 1.04 г/см³,  
наполненные короткими УВ типа Torayca T300 (Toray Industries, Япония) плотностью  
1.8 г/см³ и длиной 5 мм, а также НЧ Fe3O4 (Sigma-Aldrich, Германия) плотностью 5.2 г/см³ 
и насыщенной магнитной индукцией 450 мТл. Эти компоненты были тщательно смеша-
ны с использованием экструзии в двухшнековом смесителе тип Scientific LCR-300 (Labtech 
Engineering, Таиланд) при температуре 240 °C. Нити для последующей 3D-печати экструди-
ровали из самого АБС, АБС + короткие УВ (30 % масс.), АБС + короткие УВ (15 % масс.), 
АБС + НЧ Fe3O4 (5 % масс.), АБС + НЧ Fe3O4 (15 % масс.).



Я. Алиалшами и др. | Получение градиентных композиционных материалов … 607

Учен. зап. Казан. ун-та. Сер. Естеств. науки | 2025;167(4):603–618

1.3. Методы исследования. Воздействие добавок на термические характеристики АБС 
исследовано с использованием дифференциального сканирующего калориметра DSC 214 
Polyma (Netzsch, Германия). Для определения термического сопротивления чистых, напол-
ненных, армированных и градиентных полимеров применяли динамический механический 
анализатор DMA 242 E Artemis (Netzsch, Германия) в соответствии с ASTM E 1640–94 [27], 
при амплитуде деформации 0.1 %, частоте 1 Гц и скорости нагрева 5 К/мин. Магнитную 
восприимчивость измеряли с помощью прибора PPMS-9 (Quantum Design, США). Ударную 
вязкость углепластиков определяли согласно ГОСТ 4647–2015 [28] с использованием маят-
никового копра ТСКМ-50 (Тест-системы, Россия). Образцы, необходимые для испытаний 
на ударную вязкость и динамический механический анализ, были напечатаны на 3D-прин-
тере Anycubic Kobra (Anycubic, КНР) в следующих условиях: скорость печати 40 мм/с; вы-
сота слоя 0.15 мм; температура сопла 240 °C и плотность заполнения 100 % (рис. 2).

Рис. 2. Образцы для динамического механического анализа (а) и испытаний на ударную вязкость (б)
Fig. 2. The samples for dynamic mechanical analysis (a) and impact testing (b)

2. Результаты и их обсуждение

2.1. Изготовление нитей функционально градиентных материалов из напол-
ненного АБС. 3D-печать градиентной полимерной композитной пластины осуществляют 
с использованием гранул АБС-пластика в сочетании с гранулами, наполненными УВ или 
НЧ Fe3O4. Наполненные гранулы концентрата АБС используют в процессе экструзии для 
получения однородного композитного материала. После экструзии полученные гранулы 
концентрата, а также чистые гранулы АБС без наполнителей, загружаются в специальные 
бункеры, откуда они подаются на печатающее устройство с учетом заранее рассчитанного 
массового соотношения между концентратом и полимером для каждого слоя. Это позволяет 
точно контролировать содержание углеродных волокон и наночастиц в конечном продукте. 
Затем гранулы перемешиваются в смесителе согласно программным настройкам и расплав-
ляются при той же температуре, создавая готовую массу для 3D-печати, что обеспечивает 
высокую точность и качество получаемых изделий.

2.2. Термический анализ образцов. Термический анализ проведен для пяти различ-
ных образцов полимерных материалов. Первый образец, состоящий из АБС с добавлением 
30 % (масс.) УВ, позволяет оценить влияние высокой концентрации армирующего наполни-
теля на термические свойства материала. Второй образец отличается только содержанием 
УВ (15 % (масс.)) и дает возможность сравнить эффекты при меньшем содержании напол-
нителя. Третий образец включает 5 % (масс.) магнитных НЧ, что позволяет установить вли-
яние низкой концентрации магнитного наполнителя на термическое поведение материала. 
Четвертый образец представляет собой АБС с содержанием магнитных НЧ 15 % (масс.), 
что дает представление о влиянии более высокого содержания магнитного наполнителя на 
термические характеристики. Пятый образец изготовлен из АБС без добавок и является 
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реперной точкой для оценки изменений в термических свойствах модифицированных об-
разцов. Соответствующие параметры термического анализа представлены в табл. 1. Кривые 
плавления образцов показаны на рис. 3.

Табл. 1. Результаты термического анализа образцов АБС
Table 1. Thermal analysis of the ABS samples

Образец
Плавление Стеклование

tпика, °С tначала, °С tсередины, °С ΔНсередины, Дж

АБС 109.1 98.7 89.9 0.179

АБС + 30 % (масс.) УВ 104.9 96.7 93.8 0.038

АБС + 15 % (масс.) УВ 106.6 96.9 104.5 0.037

АБС + 5 % (масс.) НЧ 112.3 105.7 103.8 0.105

АБС + 15 % (масс.) НЧ 114.1 106.6 104.4 0.133

Рис. 3. Кривые дифференциальной сканирующей калориметрии при нагревании (а) и охлаждении (б)
Fig. 3. Differential scanning calorimetry curves during heating (a) and cooling (b)

Результаты термических испытаний образцов, содержащих магнитные НЧ, показывают 
увеличение температуры пика плавления и температуры стеклования по сравнению с АБС без 
добавок, что свидетельствует об улучшении тепловых характеристик АБС. Это связано с тем, 
что магнитные НЧ способствуют более эффективному распределению тепла внутри полимер-
ной матрицы и усиливают межмолекулярные взаимодействия. Поэтому модифицированный 
магнитными НЧ АБС может применяться в условиях, требующих высокой термической ста-
бильности и устойчивости к деформации при повышенных температурах. Следует отметить, 
что все образцы, армированные различными наполнителями, также продемонстрировали 
улучшение температуры стеклования по сравнению с чистым АБС, что свидетельствует о 
положительном влиянии армирования на термические свойства полимеров в целом.

2.3. Динамический механический анализ образцов. После завершения процесса 
печати полученные образцы подвергали динамическому механическому анализу. Эта тех-
ника позволяет выявить тонкие различия в механических свойствах образцов под воздей-
ствием температур. Температурные зависимости модуля упругости для рассматриваемых 
образцов представлены на рис. 4. 
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Рис. 4. Температурные зависимости модуля упругости
Fig. 4. Temperature dependences of the elastic modulus

Значение модуля упругости определяли при температуре 30 ºС (табл. 2).

Табл. 2. Модуль упругости образцов при 30 °С
Table 2. Elastic modulus of the samples at 30 °С

Образец Е, МПа

АБС 1000 ± 40

АБС + 15 % (масс.) УВ 1300 ± 60

АБС + 30 % (масс.) УВ 1750 ± 50

АБС + 5 % (масс.) НЧ 1080 ± 30

АБС + 15 % (масс.) НЧ 850 ± 40

АБС градиентный 1650 ± 70

Результаты испытаний показывают, что модуль упругости образца АБС составляет 
1000 ± 40 МПа и будет рассматриваться как базовый уровень для оценки влияния различных 
добавок и армирующих элементов на механические свойства материала. При добавлении 
УВ модуль упругости увеличивается в 1.3 и 1.75 раза при 15- и 30 %-ном содержании во-
локон соответственно, что свидетельствует о значительном улучшении жесткости и устой-
чивости к динамическим нагрузкам. Армирование образца УВ не только повышает модуль 
упругости по сравнению с АБС, но и делает материал более подходящим для применения 
в условиях, требующих высокой прочности и долговечности срока службы материалов, на-
пример, в автомобильной и авиационной промышленностях. Добавление к АБС 5 % маг-
нитных НЧ практически не влияет на значения модуля упругости (Е = 1080 ± 30 МПа), тогда 
как повышение содержания НЧ до 15 % приводит к снижению значения Е до 850 ± 40 МПа. 
Это подчеркивает важность оптимизации содержания добавок для достижения желаемых 
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механических свойств. Значение модуля упругости для градиентного образца сопоставимо 
с таковым для образца с 30 %-ным содержанием УВ и свидетельствует об оптимальном со-
четании жесткости и пластичности в нем.

Согласно данным рис. 5, АБС-пластик, армированный 30 % УВ, демонстрирует наивыс-
шее значение пика модуля потерь, достигающий 330 МПа, что свидетельствует о выдаю-
щихся динамических механических характеристиках материала и его высокой способности 
к поглощению энергии и вибраций.

Рис. 5. Модуль потерь (а) и тангенс угла потерь (б) для исследуемых материалов
Fig. 5. Loss modulus (a) and loss tangent (b) for the materials under study

Градиентный материал показывает сопоставимое значение модуля потерь, приблизи-
тельно 304 МПа, что указывает на его близость по характеристикам к АБС, армирован-
ному 30 % УВ. АБС, армированный 15 % УВ, демонстрирует модуль потерь на уровне  
240 МПа, что также подтверждает его хорошие свойства в контексте поглощения энергии 
и вибраций. В то же время АБС без добавок и полимер с добавлением 5 % НЧ показы-
вают среднее значение модуля потерь 180 МПа, что указывает на отсутствие ухудшения 
характеристик при добавлении 5 % НЧ по сравнению с чистым материалом. Образец, 
содержащий 15 % НЧ, демонстрирует самые низкие значения модуля потерь, не превы-
шающие 135 МПа, что указывает на ухудшение свойств поглощения энергии при высоком 
содержании наночастиц.

2.4. Определение механических свойств при ударе проводили для трех типов об-
разцов (АБС, АБС, армированного 30 % УВ, и градиентного АБС) согласно ГОСТ 19109-84 
[29]. Каждый тип был представлен в количестве шести единиц для обеспечения достаточ-
ного объема выборки и получения статистически значимых результатов. Полученные дан-
ные (табл. 3), позволяют сделать вывод о прочности и устойчивости различных типов ма-
териалов при ударных нагрузках. АБС демонстрирует высокую способность противостоять 
ударным нагрузкам. Для АБС, армированного 30 % УВ, наблюдается значительное умень-
шение работы разрушения и ударной вязкости, что указывает на ухудшение ударопрочно-
сти, несмотря на улучшение модуля Юнга. Градиентный АБС показывает промежуточные 
значения, свидетельствующие об оптимальном сочетании высокой жесткости и хорошей 
ударопрочности.
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Табл. 3. Результаты испытаний образцов на удар
Table 3. Impact testing of the samples

Образец Работа разрыва, Дж Ударная вязкость, кДж/м2

АБС 2.2 ± 0.2 54 ± 1
АБС + 30 % УВ 0.8 ± 0.2 20 ± 1

Градиентный АБС 1.4 ± 0.4 33 ± 1.5

2.5. Магнитная восприимчивость композита. Объемная магнитная восприимчи-
вость является эффективным инструментом для сравнения магнитных свойств различных 
материалов независимо от их массы или объема. Результаты ее измерения для двух образ-
цов с различным содержанием НЧ Fe3O4 представлены на рис. 6.

Рис. 6. Магнитная восприимчивость образцов АБС, содержащих НЧ Fe3O4

Fig. 6. Magnetic susceptibility of the ABS samples containing Fe3O4 NPs

Увеличение содержания НЧ ожидаемо привело к значительному (на 175 %) росту маг-
нитной восприимчивости, что подчеркивает перспективность использования композитов, 
усиленных магнитными НЧ в приложениях, которые требуют улучшенных магнитных ха-
рактеристик, например, в области интеллектуальной робототехники, сенсорных устройств 
и передовых электронных систем.

После проведения необходимых расчетов стандартного отклонения магнитной воспри-
имчивостиобразцов и коэффициента вариации, установлено, что стандартное отклонение 
в случае АБС, наполненного на 5 и 15 % магнитными НЧ, составляет 2369 и 3085 соответ-
ственно, а коэффициенты вариации – 4.83 и 2.29 %. Эти результаты подтверждают близость 
полученных значений параметра в серии испытаний к среднему арифметическому для каж-
дого образца. Величины коэффициентов вариации свидетельствует о большей однородно-
сти материала при добавлении 15 % магнитных НЧ.

2.6. Проектирование функционально-градиентной многослойной структуры 
для интеграции свойств в изделиях, напечатанных на 3D-принтере. С целью объеди-
нения магнитных и механических свойств в одной интегрированной системе с использова-
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нием 3D-печати был изготовлен образец композита с функционально-градиентной струк-
турой, состоящий из пяти слоев (см. раздел 1.3.). Градиент выбран с учетом межслойной 
адгезии и поведения материалов при печати. Вследствие различия в микроструктуре и по-
верхностных характеристиках материалов АБС с магнитными НЧ показывает слабую адге-
зию при прямом контакте с АБС, армированным УВ. Поэтому в структуру включена проме-
жуточная прослойка из чистого АБС, которая действует как буфер, снижая резкие переходы 
в свойствах и обеспечивая более однородное межслойное соединение, что улучшает общую 
структурную стабильность.

Такой подход иллюстрирует концепцию «функционально-градиентных материалов», в 
которых свойства изменяются постепенно для достижения комплексной функционально-
сти. Подобные конструкции предназначены для создания интеллектуальных многозадач-
ных изделий, пригодных для использования в робототехнике, авиационных конструкциях и 
сложных инженерных системах. Функциональное распределение свойств в предложенной 
структуре позволяет объединить магнитные характеристики в нижней части с высокой ме-
ханической прочностью в верхней, обеспечивая гибкость проектирования и повышенную 
эксплуатационную эффективность.

2.7. Разработка технологического процесса производства изделия методом 
3D-печати. Градиентный многослойный АБС-материал, используемый в проектировании 
различных частей роботов (рис. 7), таких как ноги, руки и суставы, сочетает преимущества 
различных слоев, каждый из которых выполняет специфическую функцию для повышения 
общей эффективности конструкции.

Рис. 7. Робот Boston Dynamics Spot (а), печатаемая деталь и градация слоев в ней (б)
Fig. 7. Boston Dynamics Spot robot (a), printable part and layer gradation in it (b)

Так, два слоя, армированные 30 и 15 % УВ соответственно, обеспечивают прочность 
и жесткость, что имеет критическое значение для стабильности и выносливости роботи-
зированных конечностей, позволяя им выдерживать большие нагрузки и динамические 
воздействия. Средний слой из АБС играет ключевую роль в равномерном распределении 
напряжений и сил по всей детали, что помогает предотвратить локальные повреждения 
и продлевает срок службы изделия. Слои, содержащие магнитные НЧ в концентрациях  
5 и 15 % соответственно, значительно повышают способность робота взаимодействовать 
с магнитными полями. Это не только улучшает точность его движений, но и открывает 
новые возможности для выполнения сложных задач в различных условиях эксплуатации. 
Таким образом, предложенный подход к проектированию структуры деталей позволяет 
создавать робототехнические устройства, способные адаптироваться к меняющимся тре-
бованиям и условиям работы.
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Рис. 8. Напечатанная деталь
Fig. 8. Printed part

Табл. 4. Основные настройки 3D-печати
Table 4. Basic 3D printing settings

Параметр настройки Значение

Диаметр сопла 0.4 мм

Скорость печати 40 мм/с

Температура сопла 240 °С

Температура стола 100 °С

Высота слоя 0.15 мм

Толщина 1 слоя 0.15 мм

Толщина стенки (для полых моделей) 0.8 мм

Плотность заполнения 100 %

Заключение

Проведенное исследование показало возможность использования 3D-печати по техно-
логии ФГМ для получения градиентного материала на основе АБС-пластика с добавлением 
различных по природе и содержанию функциональных добавок. Введение в полимер ко-
ротких УВ приводит, в основном, к заметному повышению механических характеристик, 
включая твердость и модуль упругости. Несмотря на то, что ударопрочность градиентного 
материала несколько ниже, чем у АБС, она превосходит таковую у материала с высоким 
наполнением УВ. Добавление магнитных НЧ увеличивает температуры плавления и сте-
клования материала, а также придает ему магнитные свойства. Таким образом, несмотря 
на присутствие ненаполненного слоя в центре слоистой конструкции градиентного матери-
ала, его механические характеристики близки к идеальным для армированного материала. 
Это можно объяснить тем, что упругий слой в центре материала равномерно распределяет 
напряжения, предотвращая их концентрацию в отдельных точках. В результате для гради-
ентного материала достигается более высокая ударопрочность по сравнению с гомогенно 
армированными аналогами. Полученные в работе результаты демонстрируют возможность 
успешного применения использованного подхода к конструированию материалов, для кото-
рых имеет значение сочетание механической прочности и ударной вязкости. Такие матери-

Для создания 3D-модели детали использовано программное обеспечение Solidworks, 
позволяющее формировать серию 2D-срезов, которые являются слоями для 3D-печати. По-
сле завершения подготовки модели к печати, деталь (рис. 8) была распечатана на 3D-прин-
тере с использованием параметров, указанных в табл. 4.
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алы востребованы в производстве конструкционных элементов для автомобильной, авиаци-
онной, медицинской и электротехнической промышленности.
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Аннотация

В работе рассмотрено влияние малослойного графена (МГ) различного состава на прочность, 
износостойкость и теплопроводность эпоксидной смолы. В качестве прекурсоров при синтезе ис-
пользованы нитрат аммония и нитрат калия, что позволило варьировать состав МГ. Установлено, 
что добавление МГ увеличивает прочность на сжатие и износостойкость эпоксидной смолы. По-
казано, что повышенное число гетероатомов в структуре МГ практически не влияет на изменение 
прочности на сжатие. Однако износостойкость эпоксидной смолы увеличивается с ростом содержа-
ния гетероатомов в структуре МГ.

Ключевые слова: графен, малослойный графен, эпоксидная смола, полимерные композиты.
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Abstract

This article examines the effect of few-layer graphene (FLG) at different compositions on the strength, 
wear resistance, and thermal conductivity of epoxy resin. The FLG composition was varied using ammonium 
nitrate and potassium nitrate as synthesis precursors. The incorporation of FLG enhanced the compressive 
strength and wear resistance of epoxy resin. Increasing the number of heteroatoms in the FLG structure had 
little influence on the compressive strength of epoxy resin but improved its wear resistance.
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Введение

Эпоксидная смола является одним из наиболее популярных материалов, который нашел 
широкое применение в промышленности: от клеевых составов до напольных покрытий и 
авиастроения [1]. Одним из наиболее перспективных способов улучшения свойств изделий 
из эпоксидной смолы является создание композиционных материалов. При таком подхо-
де удается сочетать свойства исходной матрицы (в том числе эпоксидной смолы) и напол-
нителя, что позволяет получать материалы с новыми свойствами [2]. Одними из наиболее 
перспективных наполнителей при создании композитов на основе эпоксидной смолы явля-
ются графеновые наноструктуры (ГНС), интерес к которым обусловлен их характеристика-
ми. Рассматривая свойства однослойного графена, следует отметить его теплопроводность 
(5000 Вт/(м×К)) [3], модуль Юнга (1 ТПа) [4], удельную поверхность (2630 м2/г) [5].

Использование 0.5 % (масс.) графеновых нанопластин позволяет получить 31 %-ный 
рост прочности на трехточечный изгиб по сравнению с исходной смолой [6]. Применение 
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в качестве добавки 0.3 % (масс.) аминированного оксида графена обеспечивает увеличение 
прочности на растяжение на 67 %, прочности на изгиб на 51 % и ударной вязкости на 152 %, а 
также незначительное повышение температуры стеклования и термостойкости образцов [7].  
В работе [8] показано, что введение в эпоксидную смолу до 2 % (об.) графеновых нано-
пластин, модифицированных длинноцепочечными поверхностно-активными веществами, 
приводит к повышению модуля упругости, прочности на разрыв и теплопроводности эпок-
сидной смолы на 889 %, 163 % и 105 % соответственно. В обзорных статьях [9, 10] также 
отмечается, что различные типы ГНС являются эффективными добавками при создании 
полимерных композитов на основе эпоксидных смол.

Однако введение ГНС в состав композитов не позволяет достичь теоретически пред-
сказанных результатов. Среди основных причин несовпадения теоретических ожиданий 
с экспериментальными данными выделяют дефектность используемых ГНС, а также их 
склонность к агрегации [11]. Тем не менее ГНС с химически модифицированной поверхно-
стью часто показывают большую эффективность, чем исходные ГНС, хотя подобная моди-
фикация может считаться увеличением дефектности ГНС. Кроме того, используемые ГНС 
имеют слишком высокую себестоимость вследствие несовершенства методик их синтеза по 
стратегиям «снизу-вверх» и «сверху-вниз» [12]. Поэтому применение ГНС является эконо-
мически нерентабельным.

Цель работы состоит в оценке влияния малослойного графена (МГ, не более 5 слоев), 
синтезированного в условиях самораспространяющегося высокотемпературного синтеза, 
на свойства эпоксидной смолы. Рассмотрен эффект концентрации МГ и наличия атомов азо-
та в МГ на регистрируемые характеристики композита. Поскольку показана эффективность 
добавления МГ, содержащего в своей структуре атомы азота, при создании композитов на 
основе эпоксидной смолы [13], то, исходя из того, что эффективность применения ГНС 
обратно пропорциональна их дефектности, можно предполагать, что МГ, не содержащий в 
структуре атомы азота, позволит превзойти ранее полученные результаты.

1. Материалы и методы

1.1. Синтез МГ. МГ получали методом самораспространяющегося высокотемператур-
ного синтеза [14]. Для получения МГ, содержащего азот ((N)МГ), использовали смесь 
глюкозы и нитрата аммония в массовом соотношении 1  :  1, а для получения не содер-
жащего азот МГ использовали смесь глюкозы и нитрата калия в массовом соотношении 
17 : 3. Затем порошки МГ измельчали в барабанной мельнице в течение 20 мин при соот-
ношении массы мелящих тел к массе загрузки, равном 30, скорости вращения мельницы 
200 об/мин и диаметре мелящих тел 14 мм. Насыпная плотность образцов МГ и (N)МГ 
составила 0.08 ± 0.02 г/см3.

1.2. Синтез композитов. Для получения композитов на основе эпоксидной смолы, мо-
дифицированной МГ, использовали смолу марки Ker 828 («Kumho P&B Chemicals», Южная 
Корея) с массовой долей эпоксидных групп 0.53 моль/г, которую смешивали с порошком 
МГ при температуре 45 °С в течение 30 мин с помощью верхнеприводной мешалки при  
50 об/мин. Затем добавляли отвердитель триэтилентетрамин в соотношении 1  :  10  
(к эпоксидной смоле), перемешивали смесь еще 5 мин, а после дегазировали с использова-
нием вакуума. Полученную смесь разливали по формам, в которых проходило отверждение 
композита в течение 24 ч. Затем образцы нагревали в муфельной печи при 110 °С в течение 
1 ч до полного отверждения эпоксидной смолы.
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1.3. Исследование структуры МГ. Образцы МГ и (N)МГ были охарактеризованы мето-
дом сканирующей электронной микроскопии (СЭМ) с использованием сканирующего элек-
тронного микроскопа Mira-3M (TESCAN, Чехия). Рентгенофазовый анализ проводили на 
рентгеновском дифрактометре Rigaku SmartLab 3 (Rigaku, Япония) (CuKα, λ = 0.154051 нм).  
ИК-спектры МГ получены с использованием спектрометра Инфралюм ФТ-08 (ООО «Лю-
мэкс-маркетинг», Россия). Спектры комбинационного рассеяния регистрировали на спек-
трометре Confotec NR500 (SOL Instruments, Республика Беларусь) при длине волны лазе-
ра 532 нм. Размеры частиц МГ установлены методом лазерной дифракции на анализаторе 
Mastersizer 2000 (Malvern Instruments Ltd, Великобритания). Для этого 50 мг образца МГ 
диспергировали в 50 мл деионированной воды путем взбалтывания в течение 1 мин. Измере-
ние ζ-потенциала проводили с помощью анализатора Zetasizer Nano ZS (Malvern Instruments 
Ltd, Великобритания).

1.4. Исследование свойств композитов. Прочности на изгиб [15], разрыв [16] и 
сжатие [17] измеряли на универсальной испытательной машине HSL-UT-50PC (Dongguan 
Hongjin Test Instrument Co., КНР). Скорость нагружения составляла 10 мм/мин. Теплопро-
водность определяли методом горячей нити на приборе Tempos (METER Group, Inc., США 
при температуре 25 °С.

Для оценки износостойкости и коэффициента трения (сталь/полимер) использована 
универсальная машина трения УМТ-200 (НПЦ ООО «КОНВЕРС-РЕСУРС», Россия) соглас-
но схеме трения диск–цилиндр [13]. Верхнее тело вращения прижимается к нижнему телу 
(испытуемый образец), которое жестко установлено на основании. При вращении верхнего 
тела начинает вращаться нижнее тело и основание, которое давит на тензодатчик. Из его по-
казаний рассчитывают момент силы М, а затем коэффициент трения согласно уравнению 1

						      (1)

где М – момент силы, F – сила прижатия верхнего тела к нижнему, R1 – радиус образца, R2 – 
радиус отпечатка трения, оставленного верхним телом вращения. Износостойкость опреде-
ляли как момент времени, при котором происходит разрушение поверхности образца в ходе 
трения, сопровождающееся резким скачком значения коэффициента трения. Сила прижатия 
верхнего тела вращения равна 45 Н, диаметр пятна контакта трения – 10 мм, скорость вра-
щения – 500 об/мин.

2. Результаты и их обсуждение

2.1. Структура МГ. В синтезированных порошках МГ методом СЭМ удается обнару-
жить полупрозрачные пластинки МГ и (N)МГ (рис. 1, а и б соответственно). Помимо пла-
стин присутствуют и более крупные агрегаты частиц неправильной формы. С помощью 
ЭДС анализа установлен состав образцов (% (ат.)): 85% С и 15 % О для МГ, и 76 % С, 12 %  
О и 12 % N для (N)МГ. Различия в элементном составе образцов, а именно наличие или 
отсутствие азота связано с выбором окислителя. Нитрат аммония при нагревании может вы-
делять аммиак, азот и оксиды азота [18], а нитрат калия разлагается с выделением нитрита 
калия и кислорода [19]. В процессе экзотермической реакции синтеза (N)МГ температуры 
может быть достаточно для присоединения выделяющихся азота и аммиака.



Н.Д. Подложнюк и др. | Влияние элементного состава малослойного графена... 623

Учен. зап. Казан. ун-та. Сер. Естеств. науки | 2025;167(4):619–631

С помощью рентгенофазового анализа (рис. 1, в и г) установлены межплоскостные рас-
стояния в образцах, составившие 0.42 и 0.37 нм для МГ и (N)МГ соответственно. По фор-
муле Шеррера [20] (уравнение 2) были рассчитаны размеры кристаллитов (d):

							       (2)

где K – постоянная Шеррера, равная 0.9, λ – длина волны излучения (нм), β – ширина пика 
на полувысоте (рад), θ – угол дифракции (рад). Размеры кристаллитов МГ и (N)МГ равны 
1.13 и 0.99 нм соответственно. Разделив эти значения на соответствующие межплоскостные 
расстояния, можно заключить, что количество слоев в образцах МГ с учетом всех возмож-
ных допущений и погрешностей измерений, не превышает трех.

Рис. 1. СЭМ-изображения (а и б) и рентгенограммы (в и г) образцов МГ (а и в) и (N)МГ (б и г)
Fig. 1. SEM images (a and b) and X-ray diffraction patterns (c and d) of FLG (a and c) and (N)FLG  
(b and d) samples

Методом ИК-спектроскопии подтверждено наличие двойных связей в структуре образ
цов по присутствию характерных полос поглощения при 1577 см−1 и 1565 см−1 для МГ  
и (N)МГ соответственно (рис. 2). Также на спектрах присутствуют широкие полосы, от-
вечающие за колебание связи С–О, однако отнесение их к конкретных функциональным 
группам затруднительно. Кроме того, в (N)МГ широкая полоса смещена с 1233 до 1300 см−1 
относительно таковой в образце МГ, что, вероятно, связано с наличием азота и полос коле-
баний связи C–N.
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Спектры комбинационного рассеяния также подтверждают наличие большого числа 
атомов азота и кислорода в образцах (рис. 2, в и г). Например, полосы 2D и D+Dꞌ настолько 
уширены, что сливаются в одну полосу при 2800–2900 см−1. Также уширены и частично пе-
рекрываются полосы D и G. В данном случае атомы азота и кислорода можно рассматривать 
как дефекты в ароматической структуре графена, что приводит к уширению полос [21, 22].

Рис. 2. ИК-спектры (а и б) и спектры комбинационного рассеяния (в и г) образцов МГ (а и в)  
и (N)МГ (б и г)
Fig. 2. FTIR (a and b) and Raman (c and d) spectra of FLG (a and c) and (N)FLG (b and d) samples

Порошки МГ после помола в барабанной мельнице имеют одинаковый средний размер 
частиц (табл. 1), поэтому влияние размера частиц на регистрируемые характеристики об-
разцов можно не рассматривать. Большее по модулю значение ζ-потенциала демонстриру-
ет МГ (табл. 1), что обусловлено присутствием атомов кислорода, которые имеют большую 
электроотрицательность по сравнению с атомами азота. Поэтому кислородсодержащие 
функциональные группы диссоциируют в водном растворе в большей степени. Кроме того, 
атомы азота в образце (N)МГ могут быть встроены в состав ароматической структуры, что 
может приводить к уменьшению общей степени диссоциации функциональных групп в 
составе (N)МГ.

Табл. 1. Средний размер частиц и ζ-потенциал образцов МГ
Table 1. Average particle size and ζ potential of FLG samples

Образец Средний размер частиц, нм ζ-потенциал, мВ
МГ 300 ± 25 −46 ± 2

(N)МГ 300 ± 25 −34 ± 2
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2.2. Свойства композитов. Введение МГ в эпоксидную смолу приводит к уменьше-
нию прочности на разрыв для обоих рассматриваемых образцов (рис. 3, а). Однако с учетом 
погрешности измерения его можно считать статистически незначимым.

Рис. 3. Влияние содержания МГ и (N)МГ в композите на основе эпоксидной смолы на его прочность 
на изгиб (а), прочность на сжатие (б) и прочность на разрыв (в). Зависимость аксиального давления 
при трении композитов на основе эпоксидной смолы стальным цилиндром от времени трения (г)
Fig. 3. Effect of FLG and (N)FLG contents in the epoxy resin-based composite on flexural strength (a), 
compressive strength (b), and tensile strength (c). Dependence of axial pressure during the friction of the 
epoxy resin-based composites against a steel cylinder on friction time (d)

Установлено увеличение прочности на сжатие на 55 % и 40 % для композитов на основе 
эпоксидной смолы и 1.0 % (масс.) МГ или (N)МГ соответственно (рис. 3, б). Этот эффект 
можно рассмотреть с точки зрения движения дефектов в процессе пластической деформа-
ции, при которой в материале возникают дефекты (трещины) и происходит их движение и 
объединение по мере увеличения напряжения. По достижении определенного числа дефек-
тов наступает разрушение материала. МГ может препятствовать перемещению дефектов и 
образованию трещин в материале, поэтому для разрушения образца необходимо приложить 
большее напряжение. Подобный механизм роста прочностных свойств полимерных мате-
риалов при добавлении ГНС описан в работе [23].

Прочность на изгиб практически не изменяется при введении МГ и только в композите  
с 0.25 % (масс.) (N)МГ наблюдается 20 %-ное увеличение, что можно связать с повышен-
ным содержанием гетероатомов в (N)МГ и низкой агрегацией его частиц в этом случае.
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Износостойкость композитов определена путем фиксирования разрушения поверхно-
сти образцов при трении (вращение на поверхности) стальным цилиндром по типу сверле-
ния. На рис. 3, г приведены кривые аксиального давления верхнего тела вращения (сталь-
ного цилиндра) на поверхность образцов чистой эпоксидной смолы и эпоксидной смолы, 
модифицированной 1.0  %  (масс.) МГ и (N)МГ. Для композитов наблюдается увеличение 
времени, необходимого для разрушения образцов, с 200 с до 260 и 670 с в случае МГ и 
(N)МГ соответственно. Такая разница в увеличении износостойкости, вероятно, связана с 
наличием атомов азота в структуре (N)МГ. Как показано ранее [24], наличие функционали-
зированной поверхности важно для достижения хорошей адгезии МГ к эпоксидной смоле. 
Таким образом, за счет большего числа гетероатомов на поверхности (N)МГ, вероятно, име-
ет лучшую адгезию к эпоксидной смоле, чем МГ. Следует отметить, что при содержаниях  
0.25 и 0.50 % (масс.) увеличение износостойкости не наблюдается. Процесс разрушения 
при вращении на поверхности можно описать следующим образом.Верхнее тело вращения 
(стальной цилиндр) неровностями своей поверхности проминает неровности на поверхно-
сти эпоксидной смолы, в результате чего в поверхностном слое эпоксидной смолы проис-
ходит накопление дефектов и микротрещин. Достижение определенного числа дефектов 
приводит к разрушению участка поверхности и, как следствие, уменьшению аксиального 
давления. Как и в случае с прочностными характеристиками композитов, МГ может пре-
пятствовать образованию трещин в материале, поэтому требуется большее напряжение для 
достижения разрушения, то есть увеличивается износостойкость композита.

Естественным побочным эффектом во время трения является нагревание участка тре-
ния. Разрушение при трении можно описать с точки зрения теплового разрушения – при 
нагревании молекулы становятся более подвижны и вероятность разрушения увеличивает-
ся. Таким образом, если эффективно отводить тепло из области трения, то время достиже-
ния температуры разрушения, то есть износостойкость, можно увеличить. Известно [25], 
что ГНС могут повышать теплопроводность полимерной матрицы. Однако МГ и (N)МГ 
практически не увеличивают теплопроводность эпоксидной смолы, так как большое число 
гетероатомов в составе обоих образцов значительно снижает теплопроводность частиц [26]. 
Рассматриваемые композиты демонстрируют более высокие значения теплопроводности по 
сравнению с эпоксидной смолой (табл. 2). Наблюдаемый эффект не объясняет увеличение 
износостойкости эпоксидной смолы.

Табл. 2. Теплопроводность эпоксидной смолы и ее композитов с МГ и (N)МГ
Table 2. Thermal conductivity of epoxy resin and its composites with FLG and (N)FLG

Образец ωМГ, % (масс.) Теплопроводность, Вт/(м×К) 

Эпоксидная смола 0 0.14 ± 0.01

Композит с МГ

0.25 0.17 ± 0.01

0.50 0.19 ± 0.01

1.0 0.19 ± 0.01

Композит с (N)МГ

0.25 0.18 ± 0.01

0.50 0.19 ± 0.01

1.0 0.20 ± 0.01



Н.Д. Подложнюк и др. | Влияние элементного состава малослойного графена... 627

Учен. зап. Казан. ун-та. Сер. Естеств. науки | 2025;167(4):619–631

Заключение

Показана возможность варьирования состава МГ (соотношение углерода, кислорода 
и азота в конечном образце), получаемого методом самораспространяющегося высоко-
температурного синтеза путем использования различных окислителей. Установлено, что 
МГ может значительно увеличивать прочность на сжатие (до 50 %) конечных композитов 
на основе эпоксидной смолы, причем эффективность воздействия не зависит от хими-
ческого состава МГ. В то же время триботехнические свойства композитов, содержащих  
МГ и (N)МГ, отличаются статистически значимо. Так, рост износостойкости для компози-
тов, содержащих 1.0 % (масс) МГ и (N)МГ, составляет 30 и 235 % соответственно относи-
тельно износостойкости исходной эпоксидной смолы.

Анализ полученных данных позволяет высказать предположение, что рост прочност-
ных и триботехнических свойств композитов связан с тем, что частицы МГ препятствуют 
образованию структурных дефектов (трещин) в образце, которые являются причиной раз-
рушения материала при механической нагрузке.
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Аннотация

Предложен новый двухстадийный способ получения пористой мембраны из полифенилен-
сульфида (ПФС), заключающийся в получении пленок из ПФС с наполнителем на первом этапе и 
удалении наполнителя из пленки на втором этапе. В качестве наполнителя впервые изучены по-
лиариленсульфоны, в частности полисульфон (ПСФ), полиэфирсульфон и полифениленсульфон 
(ПФСФ). Содержание порообразующей добавки составляло 30 % (масс.). Удаление наполнителя 
из пленок осуществляли методом термолиза в течение 12 ч в N-метил-2-пирролидоне (НМП) при 
различных температурах (70, 90 и 202 °С). Экспериментально установлены режимы термолиза, 
обеспечивающие полную экстракцию ПСФ и ПФСФ из пленки ПФС. Пористая структура полу-
ченных мембран из ПФС исследована с помощью сканирующей электронной микроскопии, жид-
костной порометрии и анализа газопроницаемости по индивидуальным газам (He, N2, CO2). По-
лучены образцы пористых мембран из ПФС со средним размером пор 160 нм, соответствующим 
микрофильтрационному диапазону.

Ключевые слова: мембрана, полимер, полифениленсульфид, нефть, отработанное масло,  
регенерация, разделение вязких жидкостей, размер пор, газопроницаемость.
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Abstract

A new two-stage method for the fabrication of a porous membrane from polyphenylene sulfide 
(PPS) was proposed. The approach involves the production of PPS films with a filler and the subsequent 
removal of the filler material from the film to form a porous structure. Polyarylene sulfones, such as 
polysulfone (PSF), polyethersulfone, and polyphenylene sulfone (PPSU), were investigated as fillers for 
the first time. The concentration of the pore-forming additive was 30 % (wt.). The filler was extracted 
from the films through thermolysis in N-methyl-2-pyrrolidone (NMP) for 12 h at different temperatures 
(70, 90, and 202 °C). Thermolysis conditions for the complete removal of PSF and PPSU from the 
PPS film were found empirically. The porous structure of the resulting PPS membranes was examined 
using scanning electron microscopy, liquid porometry, and gas permeability testing for specific gases  
(He, N2, and CO2). The samples of porous membranes from PPS with an average pore diameter  
of 160 nm, corresponding to the range of microfiltration, were obtained.

Keywords: membrane, polymer, polyphenylene sulfide, petroleum, waste oil, regeneration, separation 
of viscous liquids, pore size, gas permeability
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Введение

Нефть и природный газ являются основными источниками углеводородов, которые ис-
пользуются в качестве сырья для производства нефтепродуктов, пластмасс и полимеров. 
Ежедневно нефтеперерабатывающие заводы по всему миру перерабатывают около 90 млн 
баррелей сырой нефти [1]. Большинство заводов используют атмосферную и вакуумную 
дистилляцию, которые требуют значительного количества энергии для нагрева и поддер-
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жания заданной температуры в ректификационных колоннах для разделения соединений в 
соответствии с их точками кипения.

В качестве альтернативы дистилляции для разделения сырой нефти исследуются баро-
мембранные процессы, такие как нано- и ультрафильтрация [2]. Мембранная фильтрация 
может быть более энергоэффективной и экологичной по сравнению с дистилляцией и дру-
гими термическими методами, ввиду отсутствия фазовых переходов, так как разделение 
происходит под действием перепада давления на мембране [1]. Впервые мембранная филь-
трация была применена в качестве метода разделения вязких продуктов нефтяной промыш-
ленности для деасфальтизации и деметаллизации нефти в 80-годах прошлого века [3–4]. 
Однако высокая вязкость нефти затрудняет применение баромембранных процессов. В на-
стоящее время существуют два основных способа снижения вязкости фильтруемой среды, 
которые могут быть использованы для фильтрации нефти и нефтепродуктов. Это повыше-
ние температуры разделяемой среды [5–7] и разбавление нефти легкими углеводородами, 
которые впоследствии могут быть сравнительно просто регенерированы [2–3, 8]. Другой 
важной задачей, решаемой с помощью баромембранных процессов, является регенерация 
отработанных пищевых, промышленных и моторных масел, которые используются без раз-
бавления при высоких температурах [9–11].

Для эффективного применения баромембранных процессов при разделении нефти и ре-
генерации отработанных масел необходима разработка мембран, обладающих высокой ме-
ханической прочностью, термостабильностью, химической стойкостью, проницаемостью и 
устойчивостью к засорению. Для использования в качестве химически и термически стой-
ких полимерных мембран перспективно применение конструкционного (инженерного) пла-
стика полифениленсульфида (ПФС), благодаря его уникальным свойствам, таким как корро-
зионная стойкость, химическая и термическая стабильность [12]. Молекулярная структура 
ПФС характеризуется высокой прочностью, благодаря наличию бензольных колец в его 
структуре, а встраивание эфирной связи серы придает ему определенную гибкость, что мо-
жет обуславливать высокие эксплуатационные характеристики [12]. ПФС является одним 
из наиболее термостойких полимеров среди термопластов. Его температура разложения 
на воздухе превышает 450  °C, а температура длительной эксплуатации составляет около  
200 °C. Он находит широкое применение в автомобилестроении, электронике, машиностро-
ении, химической и фармацевтической промышленности и др. Кроме того, ПФС обладает 
высокой химической стойкостью к коррозии, поскольку практически отсутствуют раство-
рители, способные его растворить при температуре ниже 200 °C [13]. ПФС имеет высокую 
устойчивость к воздействию кислот, щелочей и концентрированных растворов солей [14]. 
Благодаря этому, изделия из ПФС могут быть широко использованы в экстремальных усло-
виях, например, в специальных разделительных мембранах, сепараторах для аккумуляторов 
и электролитических элементах.

Мембраны на основе ПФС в основном получают методом термически индуцированного 
разделения фаз (Thermally Induced Phase Separation, TIPS), вследствие его высокой хими-
ческой стойкости. Метод TIPS заключается в создании гомогенной смеси полимера и рас-
творителя с ее последующим контролируемым охлаждением, которое вызывает разделение 
фаз полимера и растворителя и создание пористой структуры [15]. Высокий показатель те-
кучести расплава ПФС сильно затрудняет его переработку методами экструзии и литья под 
давлением. Предварительная сшивка позволяет увеличить молекулярную массу и снизить 
текучесть расплава за счет термической полимеризации [16]. Под действием кислорода в 
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молекулярной цепи ПФС образуются многочисленные сульфоксидные и сульфоновые груп-
пы и формируется сшитая структура, содержащая арилэфирную связь [17]. Для снижения 
показателя текучести расплава помимо термической обработки ПФС можно использовать 
наполнители, например, стекловолокно, способствующее снижению текучести и повыше-
нию механической прочности композитов на основе ПФС [18]. Содержание стекловолок-
на в композитах может достигать 70 % по массе, что значительно улучшает механические 
свойства композитов [18].

Целью работы является создание пористых химически и термически устойчивых 
мембран на основе ПФС, которые могут быть использованы для фильтрации нефтепро-
дуктов при высоких температурах. В отличие от распространенных технологических 
способов получения мембран из ПФС растворным методом, в рамках работы впервые 
использована термическая деструкция наполнителя полимерной природы, введенного 
в ПФС при повышенных температурах. В качестве порообразующей добавки впервые 
рассмотрены полиариленсульфоны (полисульфон (ПСФ), полиэфирсульфон (ПЭС) и по-
лифениленсульфон (ПФСФ)).

1. Материалы и методы

1.1. Материалы. В качестве основы получаемых мембран использован порошок поли-
фениленсульфида линейной структуры с индексом текучести расплава (MFI) 1011 г/10 мин 
(при 316 °C, 5 кг) производства ООО «НТЦ «Ахмадуллины». Полимерными наполнителя-
ми выступали ПСФ марки Ultrason® S 6010, ПЭС марки Ultrason® E 6020 P и ПФСФ марки 
Ultrason® P 3010 (BASF, Германия). Исследование термической деструкции наполнителей 
проводили в N-метил-2-пирролидоне (НМП) марки х.ч. (Компонент-реактив, Россия).

1.2. Экструзия пленок ПФС–наполнитель. Для получения пленочных материалов из 
системы ПФС с наполнителем проводили грануляцию смеси на двухшнековом экструдере 
Scientific LTE 16–40 (Labtech Engineering Company LTD, Тайланд) с водяным охлаждением 
стренги. Температуры зон экструдера составляли (начало-конец) 290–295–300–305–310–
310–315–315–320–325 оС. Содержание наполнителя (ПСФ, ПЭС и ПФСФ) в полученном 
грануляте составляло 30 % (масс.). Затем методом горячего прессования на ротационном 
реометре Discovery HR-1 (TA Instruments, США) при температурах плоскостей 330 °С и 
давлении 50 Н из гранулята получали пленочные материалы.

1.3. Получение пористых мембран ПФС. Получение пористых мембран из ПФС осу-
ществляли путем деструкции наполнителя в НМП при температурах 70, 90 и 202 °С. Для 
этого образец помещали в расположенную на магнитной мешалке с нагревающей платфор-
мой колбу с НМП и проводили нагрев системы до заданной температуры. Система была 
снабжена обратным холодильником, через который пропускали водопроводную воду. Для 
предотвращения термоокислительных реакций с НМП, пространство в колбе над НМП 
было заполнено аргоном. Образец выдерживали в течение 12 ч в кипящем НМП, после чего 
помещали на ночь в дистиллированную воду, а затем на 3 ч в сушильный шкаф, разогретый 
до 100 °С. До и после вышеописанных операций измеряли массу образца с использованием 
лабораторных весов SHIMADZU AUW-220 (SHIMADZU, Япония).

1.4. Сканирующая электронная микроскопия. Оценку поверхности и пористой 
структуры ПФС мембран осуществляли с помощью сканирующей электронной микроско-
пии (СЭМ), используя настольный сканирующий электронный микроскоп Phenom XL G2 
Desktop SEM (Thermo Fisher Scientific, США) при ускоряющем напряжении 15 кэВ. Сколы 
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мембран получали путем разламывания их в среде жидкого азота. СЭМ-изображения обра-
батывали с использованием программного обеспечения Quantax 70 Microanalysis. Для уста-
новления элементного состава использована система энергодисперсионного анализа Bruker 
Quantax 70 EDS (Bruker, США).

1.5. Порометрия. Размер транспортных пор определяли на жидкостном порометре 
POROLIQ 1000 ML (Porometer, Бельгия). Принцип действия прибора основан на вытесне-
нии смачивающей жидкости (насыщенный раствор воды в изобутаноле) не смачивающей 
жидкостью (насыщенный раствор изобутанола в воде). Межфазное поверхностное натяже-
ние в такой системе составляет 2 дин/см. Для определения размера пор из мембраны выре-
зали образцы диаметром 2 см, которые помещали на 24 ч в изобутанол, насыщенный водой. 
Вымоченный в изобутаноле образец помещали в ячейку, после чего начинали измерение, в 
ходе которого наблюдали пошаговое увеличение трансмембранного давления от 0 до появ-
ления потока через мембрану, свидетельствующего об открытии пор наибольшего размера. 
Измерение проводили до стабилизации потока на одном уровне с точностью ±1 мкл/мин в 
течение 180 с.

1.6. Измерение газопроницаемости. Для установления транспортной структуры по-
лученных мембран из ПФС исследованы их газотранспортные свойства по индивидуаль-
ным газам (He, N2, CO2). Различия в молекулярных массах газов позволяют определить, ка-
кой режим течения (кнудсеновский или пуазейлевский) реализуется в порах определенного 
размера. При кнудсеновском течении размер пор составляет от 2 до 50 нм, а при пуазейлев-
ском – более 50 нм. Это можно сделать на основе значений идеальных селективностей, то 
есть отношений коэффициентов проницаемости по индивидуальным газам. Газопроницае-
мость определяли объемным методом при комнатной температуре. На мембрану подавали 
газы под давлением до 2.0 бар, со стороны пермеата поддерживали атмосферное давление. 
Предварительное вакуумирование образцов перед измерением не проводили. Площадь ра-
бочей поверхности мембраны в ходе измерений составляла 1.03 см2.

2. Результаты и их обсуждение

2.1. Извлечение наполнителя из пленки ПФС-наполнитель. Изучен процесс полу-
чения пористых мембран из ПФС путем деструкции наполнителя (ПСФ, ПЭСФ и ПФСФ) в 
НМП при различных температурах (70, 90 и 202 °С). Выбор температурных режимов обу-
словлен стремлением исследовать процесс извлечения наполнителей при температуре ниже 
температуры стеклования ПФС (70 °C), при температуре, равной температуре стеклования 
ПФС (90 °C), и при температуре кипения растворителя НМП, равной 202 °C.

В табл. 1 представлены данные по уменьшению массы образцов пленок ПФС–напол-
нитель при различных температурах экспозиции в течение 12 ч в НМП. Увеличение извле-
чения наполнителя из пленки ПФС наблюдается в ряду ПЭС < ПСФ < ПФСФ. Так, напри-
мер, при экспозиции в НМП в течение 12 ч при температуре 90 °С потеря массы образца с 
наполнителем из ПЭС составила 13.6 %, ПСФ – 18.8 % и ПФСФ – 29.3 %. Следует отме-
тить, что образцы, содержащие наполнитель ПЭС и ПФСФ, после 12 ч экспозиции в НПМ 
при температуре 202 °С частично разрушились. Это может быть связано с механической 
нестабильностью этих образцов при воздействии на них кипящего НМП. Образец, содер-
жащий в качестве наполнителя ПСФ, проявляет устойчивость при воздействии кипящего 
НМП (потеря массы составила 29.2 % от первоначальной). Потеря массы, сопоставимая 
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с содержанием наполнителя в образце ПФС (для ПСФ после 12 ч экспозиции при 202 °C,  
а для ПФСФ после 12 ч экспозиции при 90 °C), а также изменение окраски образца (рис. 1) 
могут указывать на вымывание наполнителя из образца ПФС–наполнитель.

Табл. 1. Изменение массы образцов пленок ПФС–наполнитель после 12 ч экспозиции в НМП
Table 1. Weight change of the PPS–filler film samples after 12 h of exposure to NMP

Наполнитель
Температура НМП, °С

Уменьшение массы образца от первоначальной, %

ПСФ ПЭС ПФСФ

70 10.0 7.8 23,8

90 18.8 13.6 29,3

202 29.2 ―* ―*

* – образец частично разрушился

Рис. 1. Фотографии образца ПФС с 30 % ПСФ до экспозиции в НМП (а), после 12 ч экспозиции в 
НМП при 202 °С (б) и после 12 ч экспозиции в НМП при 202 °С в сравнении с образцом ПФС без 
наполнителя и образцом до экспозиции в НМП (в)
Fig. 1. Images of the PPS sample with 30 % PSF before exposure to NMP (a), after 12 h of exposure to 
NMP at 202 °C (b), and after 12 h of exposure to NMP at 202 °C in comparison to the PPS sample without 
filler and the test sample before exposure to NMP (c)

2.2. Исследование морфологии и пористой структуры. Пористая структура полу-
ченных образцов ПФС оценена с использованием СЭМ. На рис. 2 представлен пример по-
ристой структуры образца ПФС с наполнителем ПСФ до и после 12 ч экспозиции в НМП 
при температуре 202 °С. Как видно из рис. 2, б, после извлечения наполнителя (в данном 
случае ПСФ) поверхность мембраны приобретает открытую пористость. СЭМ микрофо-
тография скола поперечного сечения позволяет говорить о наличии крупной пористости в 
толще мембраны из ПФС (рис. 2, в).

Для оценки извлечения наполнителя из образцов ПСФ–наполнитель проведен энерго-
дисперсионный анализ поверхности до и после экспозиции в НМП. Анализ проводили по 
следующим химическим элементам: углерод (С), сера (S), которые присутствуют в ПФС и 
выбранных наполнителях, а также кислород (О), который содержится в ПСФ, ПЭС и ПФСФ, 
но отсутствует в ПФС. На рис. 3 представлены результаты ЭДС-анализа образца ПФС с на-
полнителем ПСФ до и после 12 ч экспозиции в НМП при температуре 202 °С. Установлено, 
что после 12 ч экспозиции в кипящем НМП содержание кислорода на поверхности образца 
уменьшается в 1.5 раза. Это подтверждает извлечение ПСФ из образца ПФС при выбранном 
режиме экспозиции в НМП.
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Рис. 2. СЭМ микрофотографии образца ПФС с 30 % ПСФ: поверхность до экспозиции в кипящем 
НМП (а); поверхность после 12 ч экспозиции в кипящем НМП (б); скол поперечного сечения образца 
после 12 ч экспозиции в кипящем в НМП (в)
Fig. 2. SEM micrographs of the PPS sample with 30 % PSF: the surface before exposure to boiling  
NMP (a); the surface after 12 h of exposure to boiling NMP (b); the cross-section of the sample after 12 h 
of exposure to boiling NMP (c)

Рис. 3. СЭМ микрофотографии с элементным картированием и ЭДС спектры образца ПФС, 
содержащего 30 % ПСФ, до (а) и после (б) 12 ч экспозиции в кипящем НМП
Fig. 3. SEM micrographs with elemental mapping and EDS spectra of the PPS sample with 30 % PSF  
before (a) and after (b) 12 h of exposure to boiling NMP

2.3. Исследование газопроницаемости и размера пор. Для того, чтобы охарактери-
зовать транспортную пористость полученных мембран из ПФС, исследованы их газотранс-
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портные свойства по индивидуальным газам (He, N2, CO2). В табл. 2 представлены газотранс-
портные характеристики пористых мембран из ПФС, в которых наполнитель (ПСФ после  
12 ч экспозиции в НМП при 202 °C, а ПФСФ – при 90 °C) был полностью удален. Для сравне-
ния приведены газотранспортные свойства мембраны из ПФС, из которой наполнитель ПСФ 
был экстрагирован в НМП при температуре 90 °C (потеря массы образца составила 18.8 %).

Табл. 2. Газотранспортные свойства пористых мембран ПФС
Table 2. Gas transport properties of the porous PPS membranes

Экстраги- 
руемый 

наполнитель

tНМП, 
оС

Уменьшение 
массы образца

ПФС–наполнитель, 
%

P/l (N2), 
л/(м2×ч×атм)

P/l (СО2), 
л/(м2×ч×атм)

P/l (Не), 
л/(м2×ч×атм) α(Не/СО2)

ПСФ 90 18.8 3.5 2.7 4.3 1.6
ПСФ 202 29.2 42 32 54 1.7

ПФСФ 90 29.3 37 30 48 1.6

Из табл. 2 видно, что при полном извлечении наполнителя из ПФС значения газопро-
ницаемости близки. Например, для N2 при извлечении наполнителя ПСФ (29.2%) газопро-
ницаемость составила 32 л/(м2×ч×атм), а при использовании наполнителя ПФСФ (29.3%) –  
30 л/(м2×ч×атм). При неполном извлечении наполнителя, например, ПСФ на 18.8%, газо-
проницаемость пористой мембраны значительно снижается (газопроницаемость по азоту 
составляет 3.5 л/(м2×ч×атм)). Полученные значения идеальной селективности для всех ис-
следуемых образцов (α(Не/СО2) = 1.6–1.7) указывают на смешанный режим газового пото-
ка, то есть среднее между потоками Пуазейля (α = 1.0 для пары газов He/CO2) и Кнудсена 
(α = 3.3 для пары газов He/CO2). Эти результаты согласуются с данными жидкостной поро-
метрии, с помощью которой оценены размеры транспортных пор в исследуемых образцах 
после экспозиции в НМП. Так, например, для образца ПФС с наполнителем ПСФ после 12 ч 
экспозиции в кипящем НМП размер наибольшей поры составляет 200 нм, а средний размер 
пор – 160 нм, что соответствует микрофильтрационному диапазону размера пор.

Заключение

В работе впервые реализован новый двухстадийный способ получения пористой мем-
браны из ПФС, который включает в себя получение пленок из ПФС и наполнителя (ПСФ, 
ПЭС, ПФСФ) с последующим удалением последнего методом термолиза. Установле-
но, что эффективность извлечения наполнителя возрастает в ряду ПЭС < ПСФ < ПФСФ.  
С использованием СЭМ и потоковой порометрии жидкость-жидкость показано, что после 
извлечения наполнителя поверхность мембраны приобретает открытую пористость. Разра-
ботанный метод позволил создать мембраны из ПФС с регулируемой пористостью, которые, 
благодаря уникальным свойствам ПФС, могут быть использованы в процессах микрофиль-
трации, в частности, для разделения нефти и регенерации отработанных масел. В рамках 
дальнейших исследований планируется увеличить значение пористости мембран из ПФС 
за счет повышения содержания наполнителя в исходном грануляте. Это, в свою очередь, 
может привести к улучшению транспортных характеристик разрабатываемых мембран.
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Влияние паровой стерилизации на морфологию и механические 
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Аннотация

В работе впервые рассмотрено влияние обработки половолоконных мембран из полифенилен-
сульфона (ПФСФ) и полисульфона (ПСФ) перегретым водяным паром в условиях автоклавирования 
в течение 270 ч. Исследование направлено на оценку стабильности мембран при многократной па-
ровой стерилизации, что является важным аспектом применения мембран для очистки сред, содер-
жащих, например, патогенные организмы. Установлено, что мембраны на основе ПФСФ характе-
ризуются высокой термо- и гидролитической устойчивостью. Показана возможность многократной 
стерилизации ПФСФ мембран без потери эксплуатационных характеристик. Полученные данные 
подтверждают перспективность использования ПФСФ в качестве материала для создания долговеч-
ных и надежных половолоконных мембран, применение которых требует проведения частых циклов 
стерилизации.

Ключевые слова: полифениленсульфон, половолоконная мембрана, стерилизация, автоклави-
рование, механические свойства, морфология.
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Effect of steam sterilization on the morphology and mechanical properties 
of polyphenylene sulfone hollow fiber membranes
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Abstract

The effect of treatment of polyphenylene sulfone (PPSU) and polysulfone (PSU) hollow fiber membranes 
with superheated water steam under autoclaving conditions for 270 h was investigated for the first time. The 
resistance of these membranes to repeated steam sterilization, a key parameter for their application in the 
purification of media that may contain pathogenic organisms, was evaluated. PPSU membranes were found 
to exhibit high thermal stability and resistance to hydrolysis and retain their functional characteristics after 
multiple sterilization cycles. The obtained data underscore the potential of PPSU as a promising material 
for creating durable and reliable hollow fiber membranes to carry out processes that necessitate the use of 
repeated sterilization.

Keywords: polyphenylene sulfone, hollow fiber membrane, sterilization, autoclaving, mechanical 
properties, morphology
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Введение

Несмотря на большие запасы воды на планете (водой покрыто около 70 % поверхно-
сти Земли), достаточно остро стоит проблема обеспеченности чистой питьевой водой. Со-
гласно докладу Организации Объединенных Наций о состоянии мировых водных ресурсов,  
к 2030 году почти половина населения планеты будет жить в районах с высоким уровнем 
дефицита воды [1], причиной которого, в первую очередь, является деятельность человека. 
В связи с этим необходимы новые и более эффективные способы получения чистой воды.

Все большее распространение в процессах очистки воды получают мембранные процес-
сы, поскольку они просты в использовании, исключают применение химических реагентов, 



А.Ю. Раева и др. | Влияние паровой стерилизации на морфологию…646

Учен. зап. Казан. ун-та. Сер. Естеств. науки | 2025;167(4):644–657

легко интегрируются в технологические процессы и надежны [2]. Так, процесс ультрафиль-
трации позволяет эффективно удалять из воды органические молекулы, болезнетворные 
бактерии и вирусы, а также улучшать ее вкусовые характеристики [3]. Следует отметить, 
что в случаях удаления патогенов необходимо проводить периодическое обеззараживание 
очистительных сооружений во избежание биологического засорения [4].

В течение многих лет для стерилизации мембранных систем применяют химические 
методы, в числе которых обработка формальдегидом, гипохлоритом натрия, каустической 
содой, перекисью водорода и надуксусной кислотой [4, 5]. Применение этих методов огра-
ничено из-за токсичности реагентов как с экологической, так и с эксплуатационной точки 
зрения. При этом достижение цели химической стерилизации часто оказывается сложной 
задачей, поскольку микроорганизмы очень легко приспосабливаются к неблагоприятным 
условиям. Они вырабатывают новые устойчивые штаммы даже в чрезвычайно жестких хи-
мических условиях.

В настоящее время наиболее дешевым и простым способом стерилизации является об-
работка перегретым паром, так как она обеспечивает уничтожение микроорганизмов за счет 
высокой степени проникновения в материал. Кроме того, подход характеризуется отсут-
ствием токсичных продуктов, легкостью и быстротой организации процесса [6, 7].

Важным аспектом в использовании мембран для процессов удаления патогенных организ-
мов является их устойчивость к процессу стерилизации. По этой причине возникает проблема 
выбора мембранного материала, который способен сохранять неизменными свои характери-
стики в среде насыщенного водяного пара. Несмотря на наличие керамических материалов, 
современные исследования демонстрируют значительный прогресс в области полимерных 
мембран [8], что обусловлено их преимуществами, такими, как технологичность производ-
ства и низкая стоимость. Поэтому актуальной задачей является создание мембран из полиме-
ров, способных выдерживать многократную обработку перегретым паром.

Среди полимеров специального назначения все большее распространение получает по-
лифениленсульфон (ПФСФ), так как он обладает высокими показателями термической, хи-
мической и гидролитической устойчивости. Согласно данным, предоставляемым промыш-
ленными производителями полимеров (BASF, Solvay), ПФСФ демонстрирует выдающуюся 
способность к обработке перегретым паром без потери своих первоначальных механических 
характеристик в течение длительного времени (не менее 10000 циклов обработки) [9, 10].  
Поэтому сейчас ПФСФ активно используют в сфере здравоохранения для изготовления сте-
рилизационных и медицинских приборов. Очевидно, что такой материал перспективен для 
создания на его основе фильтрационных мембран.

Так, разработана половолоконная мембрана из ПФСФ с проницаемостью по воде  
136  л/(м2×ч×атм) при коэффициенте задерживания модельного красителя Blue Dextran с 
молекулярной массой 70 кг/моль 96 % [11]. На данный момент это лучший результат, до-
стигнутый в процессе фильтрационной очистки воды с помощью ультрафильтрационной 
половолоконной мембраны из чистого ПФСФ. Увеличения проницаемости удалось добить-
ся путем варьирования величины молекулярной массы матричного полимера. Наилучший 
результат получен для ПФСФ с молекулярной массой 80 кг/моль. Также выявлена зависи-
мость проницаемости мембран от химической структуры концевых групп. Показано, что 
преобладание концевых атомов хлора в структуре ПФСФ позволяет получить более разви-
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тую пористую структуру с большим количеством пальцеобразных пор в подложечном слое, 
выходящих к внешней поверхности полого волокна [11].

Целью настоящей работы является оценка влияния насыщенного водяного пара в усло-
виях автоклавирования на морфологию и механические характеристики половолоконных 
мембран из ПФСФ. В качестве материала сравнения для создания половолоконных мем-
бран был выбран полисульфон (ПСФ), также относящийся к ряду полиариленсульфонов 
и представляющий собой один из наиболее распространенных материалов для создания 
ультрафильтрационных мембран, в том числе медицинского назначения [12].

1. Материалы и методы

1.1. Материалы. Синтез ПФСФ проводили согласно методике, описанной в  
работе [11]. Избыток мономера дихлордифенилсульфона составил 6 % (мол.). Для срав-
нения эксплуатационных свойств половолоконные мембраны также получали на основе 
коммерческого полимера полисульфона (ПСФ) марки Ultrason® S 6010 (BASF, Германия), 
который используют в промышленном производстве мембранных ультрафильтрационных 
модулей. Растворителем выступал N-метилпирролидон марки х.ч. (Химмед, Россия), а в 
качестве порообразующей добавки – полиэтиленгликоль с молекулярной массой 400 г/моль 
(Sigma-Aldrich, США).

1.2. Исследование молекулярно-массовых характеристик полимеров. Гель- 
проникающую хроматографию (ГПХ) полимеров проводили на системе Waters (США) (ко-
лонка Chromatopack Microgel-5, элюент – хлороформ, скорость потока 1 мл/мин) с диф-
ференциальным рефрактометром в качестве детектора. Молекулярные массы и полидис-
персность образцов рассчитывали по стандартной методике относительно монодисперсных 
полистирольных стандартов.

Спектры 1Н ядерного магнитного резонанса (ЯМР) высокого разрешения получены на 
ЯМР-спектрометре AVANCE III HD 400 (Bruker, Германия) для растворов в CDCl3 по стан-
дартной методике. Среднечисловую молекулярную массу MN для каждого синтезированно-
го образца вычисляли по данным ЯМР-спектроскопии как отношение площади пика, соот-
ветствующего сегменту основной полимерной цепи, к площадям пиков, соответствующих 
сигналам концевых гидроксильных групп и атомов хлора.

1.3. Приготовление формовочных растворов. В ходе работы были приготовлены 
формовочные растворы состава полимер/N-метилпирролидон/полиэтиленгликоль в мас-
совом соотношении (%) 20  :  50  :  30, выбранного согласно данным, полученным ранее  
в работе [11]. Растворы для формования перемешивали в течение 20 ч при комнатной тем-
пературе до полной гомогенизации. Затем растворы фильтровали под давлением инертного 
газа 2 атм через сетку из нержавеющей стали с ячейками размера 4–5 мкм.

1.4. Определение динамической вязкости формовочных растворов проводили с 
помощью ротационного реометра Anton Paar MCR 72 (Австрия), оснащенного измеритель-
ным узлом CP60-0.5 типа конус–плоскость. Скорость сдвига составляла 10 с−1, а температу-
ра – 23 °С.

1.5. Получение половолоконных мембран. Половолоконные мембраны получали 
методом сухо-мокрого формования в варианте «свободного прядения». Формовочный рас-
твор под давлением инертного газа 2 бар подавали на формовочную кольцевую фильеру с 
внешним диаметром 1.0 мм и внутренним диаметром 0.5 мм. Во внутренний канал волокна 
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в качестве осадителя подавали дистиллированную воду. Величина воздушного зазора в ходе 
формования составила 0.5 м. Формуемое волокно под действием силы тяжести поступало 
в осадительную ванну, наполненную водой. После формования половолоконные мембраны 
выдерживали в дистиллированной воде в течение 20 ч. Методика формования подробно 
описана в работе [13].

1.6. Сканирующая электронная микроскопия. Структура и морфология мембран 
охарактеризована методом сканирующей электронной микроскопии на установке Phenom 
XL G2 Desktop SEM (Thermo Fisher Scientific Inc., США). Сколы мембран получали после 
предварительной пропитки мембран в изопропаноле и последующего разламывания их в 
среде жидкого азота. С помощью настольного магнетронного напылителя Sputter Coater 108 
auto (Cressington Scientific Instruments Ltd., Великобритания) на подготовленные в вакуум-
ной камере (~0.01 мбар) образцы наносили тонкий (5–10 нм) слой золота. Микрофотогра-
фии регистрировали при ускоряющем напряжении 15 кэВ. Определение геометрических 
параметров проводили с помощью программного обеспечения Gwyddion (ver. 2.6).

1.7. Обработка половолоконных мембран перегретым водяным паром. Иссле-
дование влияния обработки перегретым водяным паром на морфологию, механические и 
транспортные свойства ПФСФ мембран проводили с помощью бытового автоклава («До-
машний стандарт», Россия). Автоклав выполнен из нержавеющей стали, объем емкости 
составляет 24 л. Автоклав оборудован карманом для термометра, плавающим выпускным 
клапаном и аварийным клапаном для сброса давления. В качестве стерилизующего агента 
в автоклаве использовали дистиллированную воду, температура водяного пара составляла 
125 °C, давление – 1.3 атм. Общий вид автоклава и вид сверху приведены на рис. 1.

Рис. 1. Общий вид (а) и вид сверху (б) автоклава, используемого для стерилизации половолоконных 
мембран перегретым водяным паром
Fig. 1. General (a) and top (b) view of the autoclave used for sterilization of hollow fiber membranes by 
superheated water steam

Половолоконные мембраны из лабораторного образца ПФСФ и коммерческого полиме-
ра ПСФ BASF экспонировали в автоклаве в течение 270 ч, отбирая периодически пробные 
образцы.
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1.8. Исследование механических свойств половолоконных мембран. Механиче-
ские свойства половолоконных мембран (модуль упругости и прочность в МПа, а также 
относительное удлинение при разрыве в %) определяли согласно ГОСТ 11262-2017 [14] 
на разрывной машине И1140М со скоростью перемещения плунжера 5 мм/мин. Значения 
модуля упругости определяли как наклон начального (линейного) участка диаграммы на-
пряжение – деформация.

1.9. Статистическая обработка данных. Все результаты представлены как среднее зна-
чение для трех параллельных измерений. Статистическую обработку экспериментальных 
данных проводили с использованием программного пакета Excel (Microsoft Corp., США).

2. Результаты и их обсуждение

2.1. Исследование молекулярно-массовых характеристик полимеров методами 
ГПХ и ЯМР. Число концевых гидроксильных групп и атомов хлора, а также среднечисловую 
молекулярную массу полимеров оценивали методом ЯМР-спектроскопии. Вид ЯМР-спек-
тра ПСФ приведен на рис. 2.

Рис. 2. 1H ЯМР спектр ПСФ
Fig. 2. 1H NMR spectrum of PSU

Дублетные сигналы при значениях химических сдвигов δ 7.85 м.д. H-e (4H, d),  
6.93 м.д. H-f (4H, d), 7.00 м.д. H-g (4H, d) и 7.24 м.д. H-h (4H, d) соответствуют сигналам 
протонов ароматических колец основной полимерной цепи. Синглетный пик в области 
δ 1.69 м.д. (6H, s) отвечает сигналам протонов метильных групп у четвертичного атома 
углерода в основной полимерной цепи (на рис. 1 не представлен). Дублетные сигналы  
с δ 6.75 м.д. H-Sk1 (2H, d) и 7.08 м.д. H-Sk2 (2H, d) отвечают сигналам протонов арома-
тических колец, связанных с концевыми гидроксильными группами. Дублетные сигналы  
с δ 7.46 м.д. H-Sk3 (2H, d) и 8.04 м.д. H-Sk4 (2H, d) отвечают сигналам протонов аромати-
ческих колец, связанных с концевыми атомами хлора.
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Для ПФСФ 1H ЯМР спектр приведен на рис. 3. Сигналы при значениях химическо-
го сдвига δ 7.90 м.д. H-a (4H, d), 7.58 м.д. H-d (4H, d), 7.11 м.д. H-c (4H, d) и 7.07 м.д.  
H-b (4H, d) отнесены к протонам ароматических колец основной полимерной цепи. Пики 
Pk1 c δ 7.47 м.д. (2H, d) и Pk2 c δ 7.87 м.д. (2H, d) отнесены к протонам концевых аромати-
ческих колец, соединенных с концевыми атомами Cl, а сигналы протонов Pk3 с δ 6.92 м.д.  
(2H, d) и Pk4 с δ 7.44 м.д. (2H, d) – к протонам ароматических колец, соединенных с конце-
выми HO-группами.

Рис. 3. 1H ЯМР спектр ПФСФ
Fig. 3. 1H NMR spectrum of PPSU

Данные ЯМР-спектроскопии и ГПХ обобщены в табл. 1, из которых видно, что средне-
числовые молекулярные массы, вычисленные по данным ЯМР, примерно вдвое ниже, чем 
установленные методом ГПХ. Это обусловлено тем, что в ЯМР-спектроскопии молекуляр-
ная масса оценивается по числу концевых групп. При этом метод регистрирует и полимер, и 
олигомерную фракцию, в которой доля концевых групп значительно выше, чем в полимере. 
Следовательно, ЯМР-спектроскопия дает заниженные значения молекулярной массы. Од-
нако среднечисловая молекулярная масса, определенная методом ЯМР, качественно корре-
лирует с данными ГПХ.

Табл. 1. Молекулярно-массовые характеристики полиариленсульфонов
Table 1. Molecular weight characteristics of polyarylene sulfones

Образец Mp×10−3, 
г/моль

Mw×10−3, 
г/моль

MN×10−3, 
г/моль Mw/MN

MN (ЯМР), 
г/моль OH : Cl

ПСФ BASF 93 87 52 1.7 23 1 : 1.9
ПФСФ 75 81 24 3.4 13 1 : 2.3



A.Yu. Raeva et al. | Effect of steam sterilization on the morphology… 651

Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki | 2025;167(4):644–657

2.2. Исследование динамической вязкости формовочных растворов. Динамиче-
ская вязкость формовочного раствора является одним из ключевых параметров для формова-
ния половолоконных мембран. Поэтому на первом этапе работы исследована динамическая 
вязкость приготовленных формовочных растворов ПФСФ и ПСФ. Формовочный раствор 
ПФСФ имеет вязкость 42 Па×с. Динамическая вязкость раствора на основе ПСФ BASF  
составила 19 Па×с. Известно [15], что для формования половолокнных мембран формовоч-
ный раствор должен иметь динамическую вязкость от 10 до 60 Па×с. Из представленных 
данных следует, что приготовленные формовочные растворы характеризуются достаточной 
для прядения половолоконных мембран вязкостью.

2.2. Изменение морфологии половолоконных мембран в ходе автоклавиро- 
вания. На рис. 4 показаны фрагменты боковых сколов полученных половолоконных мем-
бран из лабораторного образца ПФСФ и коммерческого образца ПСФ BASF. Показано, что 
обе мембраны обладают развитой пальцеобразной структурой в подложечном слое и плот-
ным тонким селективным слоем по внутренней поверхности полого волокна.

Рис. 4. Изображения сканирующей электронной микроскопии полученных половолоконных 
мембран из лабораторного образца ПФСФ (а) и из коммерческого образца ПСФ BASF (б)
Fig. 4. Scanning electron microscopy images of the hollow fiber membranes synthesized from the labora-
tory PPSU (a) and commercial PSU BASF (b) samples

Полученные половолоконные мембраны из ПФСФ и ПСФ помещали в автоклав и экс-
понировали в перегретых водяных парах в течение 270 ч с периодическим отбором образ-
цов. Изменение геометрических параметров половолоконных мембран представлено на 
рис. 5. Для половолоконных мембран из лабораторного образца ПФСФ геометрические 
параметры (внешний диаметр 890  ±  20 мкм, внутренний диаметр 560  ±  10 мкм, толщи-
на стенки 170 ± 10 мкм) оставались постоянными на протяжении всего времени экспози-
ции. Геометрические параметры половолоконных ПСФ мембран начали изменяться после  
150 ч экспозиции в автоклаве. За 270 ч экспонирования в среде перегретого пара внешний 
и внутренний диаметр снизились с 900 ± 10 до 700 ± 10 мкм и с 660 ± 10 до 550 ± 10 мкм 
соответственно, а толщина стенки уменьшилась с 120 ± 10 до 80 ± 10 мкм. Таким образом, 
мембраны из ПФСФ обладают большей стабильностью к усадке в среде перегретого пара 
по сравнению с ПСФ аналогами.
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Рис. 5. Зависимость геометрических параметров половолоконных мембран из лабораторного образца 
ПФСФ и коммерческого образца ПСФ BASF от времени экспозиции в среде перегретого водяного пара
Fig. 5. Dependence of the geometric parameters of the hollow fiber membranes from the laboratory PPSU 
and commercial PSU BASF samples on the exposure time in superheated water steam environment

2.3. Изменение механических свойств половолоконных мембран в ходе авто
клавирования. Результаты оценки механических свойств половолоконных мембран пред-
ставлены на рис. 6. Из рис. 6, а видно, что прочность (σ) половолоконных мембран из ла-
бораторного образца ПФСФ составляет 34–36 МПа в течение всего времени обработки 
мембран перегретым водяным паром, то есть изменяется в пределах погрешности измере-
ний. Модуль упругости экспонированных мембран (Е) постоянен и равен 710 ± 80 МПа в 
течение 180 ч обработки паром (рис. 6, б). Затем величина Е постепенно повышается до зна-
чения 990 ± 80 МПа. Это говорит о том, что по мере увеличения времени экспонирования 
половолоконных мембран из ПФСФ в среде насыщенного водяного пара (по достижении 
200 ч) мембранный материал становится несколько жестче, что также подтверждают дан-
ные по относительному удлинению (рис. 6, в). Величина относительного удлинения полово-
локонных мембран из лабораторного образца ПФСФ после 200 ч обработки мембран паром 
начинает постепенно снижаться с 30.0 ± 0.6 % до 21.5 ± 0.6 %.

Рис. 6. Зависимость механических свойств (прочность (а), модуль упругости (б) и относительное 
удлинение (в)) половолоконных мембран из лабораторного образца ПФСФ и коммерческого ПСФ 
BASF от времени их обработки паром
Fig. 6. Dependence of the mechanical properties (tensile strength (a), tensile modulus (b), and elongation 
at break (c)) of the hollow fiber membranes from the laboratory PPSU and commercial PSU BASF samples 
on the time of steam treatment
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Половолоконные мембраны из коммерческого ПСФ BASF демонстрируют прочность 
24.5 ± 0.5 МПа при обработке их паром до 180 ч, а затем наблюдается резкое увеличение 
их прочности в 1.7 раза до значения 41.5 ± 0.5 МПа (рис. 6, б). Такое поведение обусловле-
но схлопыванием структуры мембран, что подтверждает уменьшение их геометрических 
параметров. Значения модуля упругости и относительного удлинения (рис. 6, б и в) также 
свидетельствуют в пользу этого. Модуль упругости остается постоянным (700 ± 80 МПа)  
в течение 180 ч, и затем возрастает более чем в 2 раза до 1670 МПа при 270 ч. Относитель-
ное удлинение при этом закономерно снижается с 20 % до 3.0 % при 270 ч, что говорит  
об охрупчивании образцов мембран из ПСФ и их деградации.

Заключение

Впервые проведено исследование воздействия перегретого водяного пара в условиях 
автоклавирования на свойства половолоконных мембран из ПФСФ и ПСФ и оценена их 
устойчивость при многократных циклах паровой стерилизации. Это имеет критическое зна-
чение для дальнейшего применения мембран в процессах очистки водных сред от биологи-
ческого загрязнения. Половолоконные мембраны из ПФСФ демонстрируют стабильность 
геометрических параметров после 270 ч обработки водяным паром, а изменения механи-
ческих характеристик минимальны. Геометрические и механические параметры половоло-
конных мембран из ПСФ, напротив, претерпевают существенные изменения, указывая на 
усадку пористой структуры и деструкцию материала мембран.

Полученные результаты свидетельствуют о том, что половолоконные мембраны на 
основе ПФСФ проявляют высокую термическую и гидролитическую стабильность, обе-
спечивающую возможность проведения многократных циклов паровой стерилизации без 
ухудшения эксплуатационных характеристик. Это обосновывает целесообразность приме-
нения ПФСФ в качестве мембранообразующего материала для изготовления долговечных 
мембранных элементов, предназначенных для эксплуатации в условиях регулярной стери-
лизационной обработки.
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Аннотация

Полиэтилентерефталатная (ПЭТ) пленка обладает хорошими диэлектрическими свойствами, 
но высокой радиационно-наведенной проводимостью. Создание ПЭТ пленки с низкой радиацион-
но-наведенной проводимостью возможно за счет допирования промышленно выпускаемых электро-
изоляционных пленок малыми молекулами – ловушками электронов. В работе исследован процесс 
допирования полиэтилентерефталатной конденсаторной пленки марки ПЭТ-КЭ (ГОСТ 24234-80) 
допантами на основе флуоренона – 2,7-динитрофлуореноном-9 (ДНФ) и 2,5,7-тринитрофлуорено-
ном-9 (ТНФ) – с учетом роли растворителя (на примере этиленгликоля и бензилового спирта), вы-
бран температурный диапазон процесса допирования, который ограничен температурой стеклова-
ния допируемого полимера (88 °С для ПЭТ) снизу и температурой кипения растворителя сверху, а 
также подобраны растворитель и концентрация допирующих растворов. На основе результатов экс-
перимента в качестве растворителей для допантов выбраны этиленгликоль для ТНФ и бензиловый 
спирт для ДНФ. В результате проведенной работы установлены критерии выбора растворителя для 
допирующей системы. Растворитель должен иметь высокую температуру кипения, обеспечивать 
хорошую растворимость допанта и проявлять низкое сродство к полимерной матрице.

Ключевые слова: допирование, радиационная стойкость, электронные ловушки, полиэтилен-
терефталатная пленка, конденсаторная пленка.
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Dukhov Automatics Research Institute, Moscow, Russia
mailbox75@vniia.ru

Abstract

Polyethylene terephthalate (PET) film has good dielectric properties but high radiation-induced 
conductivity, which can be reduced by doping commercially available electrical insulation films with 
small electron-trapping molecules. This study investigates the doping process of PET-CE capacitor film 
(State Standard 24234-80) using fluorenone-based dopants, such as 2,7-dinitro-9-fluorenone (DNF) and 
2,5,7-trinitro-9-fluorenone (TNF), and focusing on the role of the solvent (ethylene glycol and benzyl 
alcohol). The optimal doping temperature range was selected to be between the glass transition temperature 
of the doping polymer (88 °С for PET, lower limit) and the boiling point of the solvent (upper limit). The 
appropriate solvent and dopant solution concentrations were determined. Based on the experimental results, 
ethylene glycol and benzyl alcohol were selected as solvents for TNF and DNF, respectively. The following 
solvent selection criteria for doping systems were established: high boiling point, high dopant solubility, 
and low affinity for the polymer matrix.

Keywords: doping, radiation resistance, electron traps, polyethylene terephthalate film, capacitor film

For citation: Popova E.I., Kuznetsova Yu.S., Lazareva O.L., Nevskiy R.E., Sokovishin A.V. 
Polyethylene terephthalate capacitor film doping: Selection of conditions. Uchenye Zapiski 
Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2025, vol. 167, no. 4, pp. 658–668.  
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Введение

Для создания накопителей энергии, устойчивых к воздействию радиации, необходи-
мы соответствующие электроизоляционные материалы. При взаимодействии ионизиру-
ющего излучения с полимерным материалом независимо от того, состоит ли излучение 
из рентгеновских лучей, γ-излучения, протонов или электронов высокой энергии, обра-
зуются носители заряда, что приводит к появлению электропроводности [1, 2]. Эта ра-
диационно-наведенная проводимость существенно ограничивает изоляционные свойства 
полимерных диэлектриков. Физика радиационно-наведенной проводимости в полимерах, 
в том числе возникновение носителей заряда и перенос заряда, подробно изучена с точ-
ки зрения электронных процессов, протекающих в неупорядоченных материалах [2–7].  
Падающее на полимер излучение приводит к образованию пар электрон – дырка, которые 
могут разделиться с образованием мобильных носителей заряда или рекомбинировать. 
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Электроны и дырки двигаются в материале, перепрыгивая от одного дефекта к другому, 
при этом мобильность электронов и дырок различна и зависит от природы материала и его 
морфологии. В большинстве электроизоляционных полимеров дырки более мобильны, 
чем электроны [3, 8], но вследствие большего времени жизни электронов в электрических 
полях радиационно-наведенная проводимость сводится преимущественно к электронной 
проводимости [2, 9].

Существует два подхода к снижению проводимости полимерных диэлектриков под 
действием радиации: экранирование тяжелыми элементами [10] или допирование ловуш-
ками электронов или дырок [2]. Экранирование может быть эффективным, но требует 
применения объемных и тяжелых защитных слоев. Поэтому лучшим решением является 
допирование полимерных диэлектриков ловушками электронов или дырок. Этот подход 
предложен S.R. Kurtz et al. на примере полиэтилентерефталата (ПЭТ) [2] и поливинили-
денфторида [11].

В настоящее время увеличивается число публикаций по данной тематике. Так, в рабо-
тах [12, 13] обсуждается эффективность различных улавливающих электроны допантов для 
уменьшения радиационно-наведенной проводимости в полимерных материалах. Малые мо-
лекулы 2,5,7-тринитрофлуоренона-9 (ТНФ) снижают ее на 98 % при облучении 30 рад/с (Si) 
в случае применения подходящей концентрации для допирования ПЭТ. Другие электрон-
ные ловушки с малыми молекулами, например, тетрацианохинодиметан, нитроаценафтен 
и динитрофлуоренон, в тех же условиях снижают радиационно-наведенную проводимость 
на 89–98 % [12]. Фотоактивность и способность удерживать электроны, характерные для 
флуоренонов, обусловливают использование в качестве допанта ТНФ. В работах [14, 15] 
рассмотрена эффективность фотогенерации связанного в комплекс с ТНФ поли(N-винил-
карбазола) под действием видимого света как функции от приложенного электрического 
поля. При этом допирование проведено простым растворением ТНФ и поли(N-винилкарба-
зола) в подходящем растворителе с последующим его испарением. Оценена также кинетика 
рекомбинации носителей такого материала [16].

Изучено допирование пленок Mylar флуоренонами и нитропиреном из растворов в 
широком диапазоне концентраций допанта и температур, а также длительности экспози-
ции [17]. Установлено, что допирование происходит в аморфную фазу полимера и явля-
ется неэффективным при температурах ниже температуры стеклования ПЭТ вследствие 
ограничения диффузии. При выдерживании пленки в растворе допанта наблюдается оди-
наковое для всех допантов изменение концентрации в пленке во времени, в частности, 
регистрируется область быстрого роста с последующим выходом на плато. При темпе-
ратуре > 100 °С концентрация допанта в пленке достигает плато быстрее (коэффициент 
диффузии увеличивается), однако его равновесная концентрация снижается.

Анализ литературных данных позволяет считать, что создание конденсаторной ПЭТ 
пленки с низкой радиационно-наведенной проводимостью возможно за счет допирования 
промышленно выпускаемой пленки ловушками электронов, в качестве которых могут быть 
использованы нитропроизводные флуоренона. Однако технологические аспекты процесса 
допирования, например, критерии выбора растворителя для доставки допанта в полимер-
ную матрицу, не рассматриваются. Поэтому цель настоящей работы заключается в оценке 
влияния растворителя (на примере этиленгликоля и бензилового спирта) на процесс допи-
рования ПЭТ конденсаторной пленки допантами на основе флуоренона (2,7-динитрофлуо-
реноном-9 (ДНФ) и ТНФ).



E.I. Popova et al. | Polyethylene terephthalate capacitor film doping… 661

Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki | 2025;167(4):658–668

1. Материалы и методы

Эксперименты проводили на конденсаторной пленке марки ПЭТ-КЭ толщиной 
10 ± 1.5 мкм (МРТУ 6-05-1000-67) и 10 ± 1.0 мкм (ГОСТ 24234-80), из которой вырезали 
образцы прямоугольной формы размером 3×6 см. В качестве допантов рассмотрены ТНФ  
(ТУ 12-06-79) и ДНФ марки ч. (ТУ 6-09-07-732-85). Растворителями выступали этиленгли-
коль (сорт высший, ГОСТ 19710-2019) и бензиловый спирт (CAS No 100-51-6).

Содержание допанта в пленке определяли методом УФ-спектроскопии на прецизи-
онном сканирующем спектрофотометре Lambda 1050 WB (PerkinElmer Inc, США) в диа-
пазоне длин волн 300–600 нм. Пленки исследовали с помощью интегрирующей сферы  
150 мм InGaAs Int. Sphere, а растворы – в кварцевой кювете с длиной оптического пути 1 см. 
Спектры градуировочных растворов допантов представлены на рис. 1.

Рис. 1. Спектры поглощения градуировочных растворов ТНФ (а) и ДНФ (б) в этиленгликоле
Fig. 1. Absorption spectra of TNF (a) and DNF (b) calibration solutions in ethylene glycol

Градуировочные зависимости для ТНФ и ДНФ в этиленгликоле описываются уравнения-
ми 1 и 2 соответственно.
		  А = (−0.001 ± 0.002) + (8.97 ± 0.02)сТНФ [моль/м3]		  r = 0.99999	 (1)

		  А = (−0.02 ± 0.03) + (10.7 ± 0.2)сДНФ [моль/м3]		  r = 0.99916	 (2)

Концентрацию допанта в пленке рассчитывали на основании восьми измерений (по че-
тыре измерения на двух пленках) и представляли как среднее значение и доверительный 
интервал при доверительной вероятности 95 %.

2. Результаты и их обсуждение

2.1. Выбор температурных условий. Из литературных данных следует, что нижний 
порог температурного диапазона процесса допирования ограничен температурой стекло-
вания ПЭТ. Для конденсаторной пленки марки ПЭТ-КЭ методом ДСК определена темпе-
ратура стеклования аморфной фазы, равная 88 °С. Кроме того, с учетом удельной теплоты 
плавления 100 %-но кристаллического ПЭТ (26.9 кДж/моль) [18] оценена степень кристал-
личности конденсаторной пленки, составившая ∼26 %. Таким образом, пленка ПЭТ-КЭ  
характеризуется содержанием аморфной фазы 74 % с температурой стеклования 88 °С.

Верхний порог температурного диапазона экспериментов по допированию ограничен 
температурой кипения растворителей (197.6 °С для этиленгликоля и 205 °С для бензилово-
го спирта [19]) или температурой плавления полимера. Поскольку из литературы известна 
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тенденция к снижению равновесной концентрации допанта в пленке с ростом температуры 
допирования, для проведения экспериментов были выбраны три температуры (100, 120 и 
140 °С) из нижней части указанного выше диапазона от 88 до ∼200 °С.

2.2. Выбор растворителя и концентрации допантов. Задача допирования – внедре-
ние в полимерную пленку допанта в концентрации, соответствующей рабочему диапазону, 
верхняя граница которого равна ∼200 моль/м3 [20], а нижняя, согласно минимальным значе-
ниям радиационно-наведенной проводимости для допированной ДНФ пленки Mylar [13], 
составляет 20 моль/м3. Таким образом, целевой диапазон концентрации допанта в пленке 
можно принять равным 20–200 моль/м3. Если концентрация допанта будет ниже, то число 
молекул, улавливающих все возникающие под действием излучения электроны, недоста-
точно для подавления радиационно-наведенной проводимости. При очень высоких кон-
центрациях допанта электроны могут «просачиваться» сквозь полимерную матрицу за счет 
туннельного перехода между молекулами допанта.

С учетом диапазона концентраций допанта в пленке, их концентрация в растворах 
должна составлять от 10 моль/м3. Согласно литературным данным [1, 17], растворителями 
для нитропроизводных флуоренона являются этиленгликоль и бензиловый спирт, которые 
и были использованы в настоящем исследовании. Растворимость ТНФ в этиленгликоле при 
100 °С составила ∼13 моль/м3, а в бензиловом спирте – на два порядка больше. В рамках 
проводимого эксперимента это эквивалентно неограниченной растворимости, то есть лю-
бой из этих растворителей подходит для проведения эксперимента по допированию пленки 
ПЭТ-КЭ с позиции обеспечения необходимой концентрации допанта в растворе.

Результаты исследования растворимости ДНФ в этиленгликоле и бензиловом спирте 
представлены на рис. 2. Установлено, что при температуре 100 °С необходимая концентра-
ция ДНФ может быть достигнута только в бензиловом спирте. Таким образом, для дальней-
ших исследований по допированию ПЭТ-КЭ использовали системы ТНФ в этиленгликоле 
и ДНФ в бензиловом спирте.

Рис. 2. Изменение концентрации насыщенного раствора ДНФ в этиленгликоле (а) и бензиловом 
спирте (б) в зависимости от температуры
Fig. 2. Changes in the concentration of saturated DNF solution in ethylene glycol (a) and benzyl alcohol 
(b) depending on the temperature
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2.3. Допирование ПЭТ пленки в системе ТНФ в этиленгликоле. Кривые роста со-
держания ТНФ в пленке по мере увеличения времени выдерживания при трех температу-
рах представлены на рис. 3. С ростом температуры скорость внедрения допанта на ранних 
стадиях процесса увеличивается. Так, через 20 мин от начала эксперимента концентрация 
ТНФ в пленке составляет ∼7, ∼14 и ∼39 моль/м3 для экспериментов при 100, 120 и 140 °С 
соответственно. В то же время предельно достигаемая (равновесная) концентрация допанта 
в пленке уменьшается и равна ∼150, ∼120 и ∼90 моль/м3 в случае 100, 120 и 140 °С соответ-
ственно. Обе эти тенденции согласуются с литературными данными [17].

Рис. 3. Зависимость концентрации ТНФ в пленке ПЭТ-КЭ от времени выдерживания в 10.2 моль/м3  
допирующем растворе ТНФ в этиленгликоле с концентрацией при различных температурах 
(вставка –фрагмент зависимости на начальном этапе)
Fig. 3. Dependence of TNF concentration in PET-CE film on the exposure time in 10.2 mol/m³ doping 
solution of TNF in ethylene glycol at various temperatures (inset shows the fragment of the initial stage of 
dependence)

Следует отметить, что равновесные концентрации ТНФ в пленке почти на порядок 
выше, чем концентрация ТНФ в допирующем растворе (10.2 моль/м3) независимо от тем-
пературы эксперимента. Максимум на кривой нарастания содержания ТНФ в пленке при 
температуре эксперимента 140 °С статистически не достоверен. Обобщая серию экспери-
ментов для системы ТНФ в этиленгликоле, можно констатировать, что нижний предел ра-
бочих концентраций ТНФ в пленке (20 моль/м3) может быть достигнут при любой из рас-
смотренных температур.

2.4. Допирование ПЭТ пленки в системе ДНФ в бензиловом спирте. Учитывая ре-
зультаты, полученные для системы ТНФ в этиленгликоле, для ДНФ в бензиловом спирте с 
концентрацией ДНФ 38.8 моль/м3 ожидались более впечатляющие результаты. Однако как 
видно из кривой роста содержания ДНФ в пленке от времени выдерживания при температу-
ре 100 °С (рис. 4, а), равновесная концентрация ДНФ в пленке составила всего ∼20 моль/м3.  
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Сопоставление изотерм для систем ДНФ в бензиловом спирте и ТНФ в этиленгликоле  
(рис. 4, б) показывает близкие скорости роста концентрации допанта в пленке для обеих 
систем при одной и той же температуре. Однако после достижения концентрации ∼20 моль/м3  
процесс накопления допанта в системе ДНФ в бензиловом спирте останавливается.

Рис. 4. Зависимость концентрации ДНФ в пленке ПЭТ-КЭ от времени выдерживания в 38.8 моль/м3  
допирующем растворе ДНФ в бензиловом спирте при температуре 100 °С (а) и начальный фрагмент 
зависимостей концентрации допанта в пленке от времени выдерживания для систем ТНФ в 
этиленгликоле и ДНФ в бензиловом спирте при температуре 100 °С (б)
Fig. 4. Dependence of DNF concentration in PET-CE film on the exposure time in 38.8 mol/m³ doping 
solution of DNF in benzyl alcohol at 100 °C (a) and the fragment of the initial stage of dependence of the 
dopant concentration in PET-CE film on the exposure time for TNF in ethylene glycol and DNF in benzyl 
alcohol at 100 °С (b)

Такое поведение можно объяснить следующим образом. В момент достижения рав-
новесия ПЭТ пленка содержит допант и растворитель. В ходе отдельного эксперимен-
та оценено набухание ПЭТ-КЭ пленок при 100 °С, которое составляет 1.5 % (масс.) в 
этиленгликоле и 5 % (масс.) в бензиловом спирте. Учитывая степень кристалличности  
ПЭТ (26 % (масс.)), можно оценочно рассчитать соотношение компонентов в равновес-
ных системах пленка – допант – растворитель, которые равны 500 звеньев ПЭТ (аморф-
ной фазы) : 15 молекул ТНФ : 33 молекулы этиленгликоля и 500 звеньев ПЭТ (аморфной 
фазы)  : 2 молекулы ДНФ : 60 молекул бензилового спирта. По-видимому, в равновесном 
для данной температуры состоянии систем ПЭТ–допант–растворитель соотношение зве-
ньев ПЭТ к сумме молекул допанта и растворителя приблизительно одинаково (на уровне 
50–60 молекул на 500 звеньев аморфной фазы ПЭТ). Если пленка существенно набухает в 
растворителе, то вакантные места, которые должны быть заняты допантом, оказываются за-
нятыми молекулами растворителя. С этой точки зрения достижение концентраций допанта 
в пленке, близких к верхнему пределу рабочего диапазона (∼200 моль/м3), возможно только 
при использовании растворителя с низким сродством к полимерной матрице. Обсуждая до-
пирование в системе ДНФ в бензиловом спирте, необходимо отметить, что при температуре 
100 °С все же возможно достижение концентрации допанта в пленке, близкой к нижнему 
пределу рабочего диапазона (∼20 моль/м3). Увеличение температуры приведет к дальнейше-
му снижению равновесной концентрации ДНФ в пленке.
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Заключение

Исследование допирующих систем с различными растворителями позволяет сформули-
ровать критерии выбора растворителя для допанта. Во-первых, растворитель должен иметь 
высокую температуру кипения. Интервал рабочих температур ограничивается температу-
рой стеклования допируемого полимера (88  °С для ПЭТ) снизу и температурой кипения 
растворителя сверху. Во-вторых, он должен обеспечивать хорошую растворимость допанта 
и обладать низким сродством растворителя к полимерной матрице, так как высокое срод-
ство приводит к набуханию полимера и блокированию молекулами растворителя полостей 
свободного объема в аморфной фазе полимера, что снижает равновесную концентрацию 
допанта в полимерной пленке.
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Аннотация

В работе исследован эффект добавления 1,4-диоксана в формовочные растворы на основе  
поли(акрилонитрил-со-метилакрилата) (поли(АН-со-МА)) с использованием растворителей –  
диметилсульфоксида (ДМСО) и N-метилпирролидона (НМП). Показано, что введение мягкого оса-
дителя изменяет реологические свойства растворов: в системе поли(АН-со-МА)/НМП добавле-
ние 1,4-диоксана приводит к снижению вязкости, а в поли(АН-со-МА)/ДМСО – к ее повышению. 
Установлена прямая корреляция между вязкостью раствора и скоростью осаждения полимера при 
получении мембран методом инверсии фаз. Добавление 1,4-диоксана позволяет целенаправленно 
регулировать морфологию и фильтрационные свойства мембран, уменьшая средний размер их пор. 
Причем в случае мембран с НМП уменьшение среднего размера пор проявляется в большей степе-
ни, чем в случае мембран с ДМСО (до 11.8 и 19.1 нм соответственно). Показано, что при фильтра-
ции нефти и раствора нефти в толуоле с концентрацией 100 г/л задерживание по асфальтенам обеих 
мембран составляет > 98 %. Полученные результаты подтверждают перспективность использования 
1,4-диоксана при создании мембран с заданными характеристиками для нефтехимической отрасли.

Ключевые слова: ультрафильтрация, полимерные мембраны, поли(акрилонитрил-со-метила-
крилат), инверсия фаз, мягкий осадитель, 1,4-диоксан, размер пор, нефть, асфальтены.
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Reduction of pore size in membranes from polyacrylonitrile 
by introducing 1,4-dioxane into the casting solution
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Abstract

The effect of adding 1,4-dioxane to casting solutions based on poly(acrylonitrile-co-methyl acrylate) 
(poly(AN-co-MA)) using solvents such as dimethyl sulfoxide (DMSO) and N-methylpyrrolidone (NMP) 
was investigated. The introduction of the soft precipitant altered the rheological properties of the studied 
solutions: it reduced viscosity in the poly(AN-co-MA)/NMP system and caused an opposite change in 
the poly(AN-co-MA)/DMSO system. A direct correlation was established between the solution viscosity 
and the deposition rate during membrane formation via phase inversion. The incorporation of 1,4-dioxane 
enabled controlled modification of the membrane morphology and filtration performance by reducing the 
average pore size. The reduction in the average pore size was more pronounced in the membranes with 
NMP than in the membranes with DMSO (up to 11.8 nm and 19.1 nm, respectively). During the filtration 
of crude oil and 100 g/L oil solution in toluene, the rejection of asphaltenes by the membranes of both types 
was over 98 %. These findings confirm the potential of 1,4-dioxane in the development of membranes with 
tailored properties for application in the petrochemical industry.

Keywords: ultrafiltration, polymer membranes, poly(acrylonitrile-co-methyl acrylate), phase inversion, 
soft precipitant, 1,4-dioxane, pore size, petroleum, asphaltenes
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Введение

Нефтеперерабатывающая и нефтехимическая промышленность традиционно относит-
ся к числу наиболее ресурсоемких отраслей, причем на такие разделительные процессы, 
как дистилляция, приходится 10–15 % мирового потребления энергии [1–3]. В последние 
десятилетия все большее внимание уделяется поиску новых методов, альтернативных ди-
стилляции, для переработки нефти и нефтепродуктов, которые позволят минимизировать 
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воздействие на окружающую среду и понизить энергозатраты на процесс [3]. Одним из 
перспективных подходов является использование баромембранных процессов, которые яв-
ляются энергоэффективными, безопасными и экологически чистыми методами разделения, 
очистки и концентрирования жидкостных смесей [4–6]. Процессы микро-, ультра- и нано-
фильтрации обеспечивают непрерывный режим разделения веществ в сравнительно мягких 
условиях под действием трансмембранного давления [3].

Несмотря на то, что мембранные технологии являются перспективными для разделения 
нефтяных сред, научных работ в этой области немного. Это объясняется тем, что исследо-
ватели, работающие над ультрафильтрацией углеводородных смесей, сталкиваются с неко-
торыми проблемами, например, химическим и механическим воздействием на мембрану, 
которое может привести к изменению структуры полимера, низким потокам и изменению 
селективности мембраны [6]. Высокая вязкость нефти и темных нефтепродуктов являет-
ся ограничивающим фактором для применения процессов фильтрации, так как приводит 
к сильному падению проницаемости мембран. Снижение вязкости исходной смеси может 
быть достигнуто путем фильтрации при повышенных температурах [7–12] или предвари-
тельным разбавлением исходной смеси низковязким растворителем [10–17].

Поскольку фильтрация нефтяных жидкостей на ультрафильтрационных мембранах ос-
ложняется подбором подходящего полимерного материала, в качестве полимера был выбран 
полиакрилонитрил (ПАН), который обладает гидрофильными свойствами, и, как следствие, 
мембраны на его основе меньше подвержены засорению органическими веществами. Так-
же мембраны из ПАН отличаются высокой устойчивостью к органическим растворителям, 
хорошими механическими и пленкообразующими свойствами [13, 18, 19]. Проведенные 
исследования [15, 20–21] демонстрируют перспективность использования ПАН мембран 
при разделении сырой нефти и ее растворов в толуоле для выделения высокомолекулярных 
компонентов – асфальтенов.

Наиболее распространенным методом формирования ПАН-мембран из формовоч-
ного раствора является процесс инверсии фаз, индуцированной жидким осадителем  
(NIPS – nonsolvent-induced phase separation) [21, 22]. Этот подход позволяет получать 
асимметричные мембраны с пористой подложкой и тонким плотным поверхностным сло-
ем, что обеспечивает узкое распределение пор при высокой проницаемости мембраны. 
Для получения полимерного раствора из ПАН можно использовать апротонные раство-
рители, например, диметилсульфоксид (ДМСО), N,N-диметилформамид, N,N-диметил
ацетамид и N-метилпирролидон (НМП) [23]. Однако в стандартных условиях получение 
мембран данным методом не позволяет достичь значений молекулярного веса отсечения 
ниже 5000–8000 г/моль [24], которые необходимы для эффективного отделения катализа-
торов нефтехимического синтеза от продуктов реакции, а также для фракционирования 
нефти и нефтепродуктов. Достижение молекулярного веса отсечения ниже 5000 г/моль с 
использованием ПАН мембран является нетривиальной задачей и ограничивает их при-
менение для глубокой очистки и фракционирования нефтепродуктов, требующих более 
узкого распределения пор.

Размер поверхностных пор и пористость мембраны зависят от относительной скоро-
сти диффузии растворителя и осадителя [25]. Состав формовочного раствора, условия 
осаждения и состав коагуляционной ванны влияют на параметры фазового распада, и, как 
следствие, на свойства получаемых мембран. Для варьирования размера пор мембраны в 
формовочный раствор и осадительную ванну часто добавляют дополнительный компонент, 
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который позволяет получить желаемые характеристики. При получении ПАН мембран в 
формовочный раствор обычно добавляют полиэтиленгликоль [26, 27], поливинилпирроли-
дон [28] или соли [29]. Однако указанные добавки в большинстве случаев позволяют либо 
увеличить пористость и размер пор, либо получить более предпочтительную с приклад-
ной точки зрения губчатую структуру мембраны, в то время как для снижения размера пор 
обычно увеличивают концентрацию полимера.

С другой стороны, для получения нанофильтрационных мембран в формовочные рас-
творы часто добавляют легколетучие компоненты – такие как ацетон, 1,4-диоксан или тетра-
гидрофуран [22, 24, 30]. Перед погружением мембраны в коагуляционную ванну ее выдер-
живают в течение какого-то времени для частичного испарения легколетучих компонентов 
с поверхности. Это приводит к увеличению концентрации полимера и формированию более 
плотного слоя с меньшим молекулярным весом отсечения и размером пор [22, 30]. Однако 
такой метод имеет ограничения при формовании ПАН мембран, так как указанные компо-
ненты являются мягкими осадителями по отношению к ПАН и при определенных количе-
ствах вызывают осаждение полимера в растворе.

Описаны способы получения мембран из формовочных растворов ПАН с добавлением 
мягкого осадителя – ацетона – с использованием методов NIPS [24] и VIPS (vapor induced 
phase separation – парами осадителя) [31]. Добавление ацетона позволяет снизить вязкость 
раствора в 2–3 раза и получить мембраны с более упорядоченной структурой и более 
выраженным плотным поверхностным слоем. При этом наблюдается уменьшение моле-
кулярного веса отсечения с 58 000 до 1800 г/моль [24], а наибольшее влияние на размер 
пор оказывает состав раствора, а не степень его испарения [31]. Плоские ПАН-мембраны 
с молекулярным весом отсечения 1800 г/моль, полученные методом NIPS, применены для 
ультрафильтрации растворов нефти в толуоле [20]. Их проницаемость по толуолу соста-
вила 25.3 ± 1.8 л/(м2×ч×атм). Задерживание асфальтенов зависит от концентрации раство-
ра и составляет 73 % при концентрации 1 г/л и > 95 % при концентрации ≥ 10 г/л. Мем-
браны характеризуются высокой устойчивостью к засорению, восстанавливая до 99 %  
исходной проницаемости после прямого промывания толуолом.

В рамках настоящего исследования рассмотрено получение мембран на основе  
поли(АН-со-МА) методом NIPS с использованием в качестве мягкого осадителя  
1,4-диоксана – одного из перспективных легколетучих соединений, отличающегося малой 
токсичностью и низкой стоимостью. Показано, что введение 1,4-диоксана в формовочный 
раствор влияет на его реологические свойства и структурообразование, а также фильтраци-
онные характеристики получаемых мембран. Проведена оценка эффективности примене-
ния полученных мембран для выделения асфальтенов из нефтяных смесей.

1. Материалы и методы

1.1. Приготовление формовочных растворов. Для получения мембран использовали 
сополимер поли(АН-со-МА) с соотношением мономеров 92 : 8 от ПО «Оргстекло» ВНИИСВ 
(Россия). Средневесовая молекулярная масса сополимера Mw составляет 107 кг/моль, степень 
полидисперсности Mw/Mn – 2.31. В качестве растворителей использовали ДМСО или НМП 
марки х.ч. (Химмед, Россия). В формовочные растворы также добавляли 1,4-диоксан (х.ч.)  
от ООО «Компонент» (Россия), который является мягким осадителем для полимера. Для 
получения формовочного раствора в колбу помещали рассчитанный объем растворите-
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ля или смеси растворителей (растворитель/мягкий осадитель), колбу ставили на магнит-
ную мешалку IKA C-MAG HS 10 (IKA®-Werke, Германия) и при скорости перемешивания  
50 об/мин добавляли необходимую массу сополимера. Для ускорения процесса растворе-
ния полимера раствор обрабатывали в ультразвуковой ванне Сапфир ТТЦ (РМД) (Россия) 
в течение 30 мин. Затем полученную смесь перемешивали в течение 72 ч со скоростью 
50 об/мин при комнатной температуре (20–23 °С). Каждые 12 ч раствор дополнитель-
но обрабатывали ультразвуком. Были приготовлены 4 формовочных раствора с одинако-
вым содержанием полимера 12 % (масс.): в НМП, ДМСО и в смесях НМП/1,4-диоксан и  
ДМСО/1,4-диоксан с соотношением 90/10. Полученные растворы хранили в закрытой 
склянке при комнатной температуре и влажности не более 25 %. Гомогенность полученных 
формовочных растворов определяли с помощью оптического микроскопа Micromed R-1 
(КНР), оснащенного цифровой камерой (HiROCAM MA88, США).

1.2. Исследование кинетики осаждения формовочных растворов. Для исследова-
ния кинетики осаждения полимерных растворов использовали методику «ограниченного» 
слоя [32]. Суть метода заключается в том, что при склеивании двусторонним скотчем двух 
покровных стекол формируется прямоугольный канал с глубиной 300–400 мкм, открытый 
к атмосфере с одной стороны. Канал заполняли полимерным раствором, после чего стекла 
фиксировали на предметном стекле микроскопа. С помощью пипетки Пастера с открытой 
к атмосфере стороны к полимерному раствору прикапывали осадитель (воду). Затем с по-
мощью подключенной к микроскопу видеокамеры фиксировали развитие процесса фазово-
го распада раствора. Этот способ позволяет моделировать процесс формирования плоской 
полимерной мембраны заданной толщины и визуализировать процесс образования пор в 
асимметричной мембране. Кинетику осаждения полимера оценивали с помощью скорости 
осаждения слоя раствора полимера заданной толщины. Ее находили как отношение общей 
толщины полимерного слоя (d, мкм) ко времени его осаждения (t, с) согласно уравнению 1

						      (1)

Скорость осаждения вычисляли как среднее значение по 5 измерениям для каждого по-
лимерного раствора.

1.3. Измерение динамической вязкости полимерных растворов. Для измерения 
динамической вязкости формовочных растворов использовали ротационный вискозиметр 
Brookfield DV III-Ultra (Brookfield Engineering Labs, США), шпиндель RV-07, скорость вра-
щения которого составляла 100 об/мин. Измерения проводили при комнатной температуре 
23 °C. Вязкость каждого полимерного раствора вычисляли как среднее арифметическое для 
трех измерений.

1.4. Получение мембран методом инверсии фаз. Мембраны получали методом по-
гружения в осадитель (NIPS), в качестве которого выступала вода. На очищенное ацетоном 
стекло с помощью ракели наносили слой раствора полимера толщиной 200 мкм. Нанесение 
осуществляли при температуре 20 °C и влажности 20 %. Стекло с нанесенным раствором 
быстро погружали в ванну с дистиллированной водой. После завершения процесса форми-
рования мембраны образцы переносили в отмывочную ванну с дистиллированной водой и 
выдерживали в течение 24 ч. Сформированную мембрану последовательно отмывали эта-
нолом и изобутанолом по 24 ч в каждом. По окончании обработки изобутанолом избыток 
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жидкости удаляли с поверхности мембраны с помощью фильтровальной бумаги, после чего 
мембрану оставляли в вытяжном шкафу при комнатной температуре и влажности 20 % до 
полного высыхания.

1.5. Морфологию и структуру мембран устанавливали методом сканирующей элек-
тронной микроскопии (СЭМ) с помощью настольного сканирующего электронного микро-
скопа Phenom XL G2 Desktop SEM (Thermo Fisher Scientific Inc., США) при ускоряющем 
напряжении 15 кэВ. Для получения сколов мембраны предварительно замачивали в изопро-
паноле и затем разламывали в среде жидкого азота. На подготовленные в вакуумной каме-
ре (~0.01 мбар) образцы с использованием установки Sputter Coater 108 auto (Cressington 
Scientific Instruments Ltd., Великобритания) наносили тонкий слой серебра толщиной  
5–10 нм. Толщину плотного скин-слоя и общую толщину мембраны определяли по получен-
ным микрофотографиям с помощью программного обеспечения Gwyddion (version 2.53).

1.6. Определение размера пор мембран проводили методом жидкостной пороме-
трии с использованием порометра POROLIQ 1000 ML (Porometer, Бельгия). Принцип ра-
боты устройства основан на вытеснении смачивающей жидкости несмачивающей [24].  
В качестве основного параметра рассматривали средний размер пор по потоку (MFP – mean 
flow pore), который определяли как размер пор, для которого 50 % потока жидкости про-
ходит через поры большего размера, а 50 % – через поры меньшего размера. Кроме MFP, 
измеряли наибольший размер пор (dmax), который рассчитывали для давления, при котором 
поток через мембрану превышал 5 мкл/мин.

1.7. Оценка фильтрационных свойств мембран и их задерживающей способ-
ности по асфальтенам. Фильтрационные исследования мембран проводили в тупиковом 
режиме фильтрации. Активная площадь мембраны составляла 7.9 см2, объем жидкости, 
помещаемой в ячейку, составлял 900 мл. В работе измеряли проницаемость по чистым 
растворителям – воде и толуолу, а также по нефти и растворам нефти в толуоле с кон-
центрациями 1, 10 и 100 г/л. Для снижения эффекта концентрационной поляризации в 
процессе фильтрации разделяемых смесей осуществляли постоянное перемешивание со 
скоростью 600 об/мин. Трансмембранное давление поддерживали на уровне 3 атм для 
фильтрации чистых растворителей и на уровне 15 атм при разделении нефти и растворов 
нефти в толуоле. Фильтрацию проводили до достижения постоянного во времени значе-
ния проницаемости. 

Проницаемость мембраны (P) рассчитывали по уравнению 2

					     (2)

где m – масса пермеата (г), прошедшего через мембрану с площадью S (м2) в течение време-
ни Δt (ч), ρ – плотность жидкости (г/см3), ∆p – трансмембранное давление.

Для оценки задерживающей способности мембран регистрировали спектры растворов 
нефти в толуоле в видимой и УФ областях. Оптическую плотность (А) измеряли с помо-
щью спектрофотометра ПЭ-5400УФ (PromEcoLab, Китай). В качестве раствора сравнения 
использовали толуол. По мере увеличения длины волны оптическая плотность растворов 
монотонно уменьшалась. Задерживающую способность мембраны (R) определяли, исходя 
из оптической плотности жидкости в ячейке (Аf) и пермеате (Аp), согласно уравнению 3

					     (3)
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Для расчета задерживающей способности использовали значения оптической плотно-
сти растворов до и после мембраны при длинах волн 365, 490 и 900 нм в случае исходной 
концентрации нефти 1, 10 и 100 г/л соответственно. При фильтрации нефти пробы разбав-
ляли толуолом по методике, описанной в работе [20].

1.8. Расчет параметров засорения мембран. Для оценки засорения мембраны ис-
пользовали четыре параметра: коэффициент общего загрязнения (TFR – total fouling ratio), 
коэффициент обратимого загрязнения (RFR – reversible fouling ratio), коэффициент необра-
тимого загрязнения (IFR – irreversible fouling ratio) и коэффициент восстановления потока 
(FRR – flux recovery ratio) [18, 33, 34], которые рассчитывали согласно уравнениям 4–7 со-
ответственно:

					     (4)
				  

(5)

					     (6)

						      (7)

где J1 – исходный поток чистого растворителя (толуола); JS – поток фильтруемого раствора; 
J2 – поток чистого растворителя через загрязненную в результате фильтрации мембрану 
после ее промывания толуолом.

2. Результаты и их обсуждение

2.1. Реологические свойства и структурообразование формовочных растворов. 
В ходе работы получены формовочные растворы, содержащие 12 % (масс.) сополимера 
поли(АН-со-МА) в растворителе или смесях растворителей с 1,4-диоксаном. Исследована 
динамическая вязкость растворов, которая непосредственно влияет на скорость осаждения 
и морфологию получаемых мембран [35, 36]. Кинетику осаждения изучали с помощью оп-
тического микроскопа с непрерывной регистрацией изображения в течение временного пе-
риода, обеспечивающего продвижение фронта формирования структуры в направлении от 
границы раствора с воздухом до противоположной стороны канала.

В табл. 1 представлены значения динамической вязкости и скорости осаждения исследу-
емых формовочных растворов. Вязкость бинарной системы поли(АН-со-МА)/ДМСО ниже, 
чем системы поли(АН-со-МА)/НМП, так как по параметрам растворимости Хансена ДМСО 
имеет более высокое термодинамическое сродство к этому полимеру, чем НМП [24]. Пока-
зано, что добавление 1,4-диоксана в систему поли(АН-со-МА)/НМП приводит к снижению 
динамической вязкости, а добавление в систему поли(АН-со-МА)/ДМСО ведет, наоборот, 
к ее увеличению. Установлена прямо пропорциональная зависимость скорости осаждения 
растворов от их вязкости, что, вероятно, связано с термодинамической нестабильностью об-
разующейся при добавлении мягкого осадителя псевдобинарной системы (полимер/раство-
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ритель/мягкий осадитель). При высокой вязкости растворов диффузия молекул замедляет-
ся, но одновременно увеличивается локальная флуктуация концентрации, что способствует 
более быстрому фазовому разделению, что приводит к ускорению осаждения.

Табл. 1. Характеристики формовочных растворов
Table 1. Characteristics of the casting solutions

Состав формовочного раствора

Обозначе-
ние

Динамиче-
ская вязкость, 

Па×с

Скорость 
осаждения, 

мкм/с
Раствори-

тель

Содержание, % (масс.)

поли(АН-со-МА) Раство-
ритель 1,4-диоксан

ДМСО
12 88.0 0.0 М01 33.0 ± 0.1 20 ± 3

12 79.2 8.8 М02 37.8 ± 0.1 27 ± 9

НМП
12 88.0 0.0 М03 39.1 ± 0.2 8.4 ± 0.7

12 79.2 8.8 М04 26.9 ± 0.2 6.7 ± 0.5

Оптические наблюдения в режиме реального времени за исследуемыми составами 
после контакта с водой представлены на рис. 1. Сравнение фазового разделения в рас-
сматриваемых системах позволяет выделить отличительные особенности. Так, в случае 
НМП формируется более развитая структура с упорядоченными порами, размер которых 
плавно увеличивается за счет соединения соседних пор при удалении от поверхности 
контакта с осадителем (рис. 1, в). При использовании ДМСО в качестве растворителя 
формируются более крупные структуры, размер которых практически не изменяется по 
мере удаления от поверхности (рис. 1, а). В случае добавления 1,4-диоксана в формо-
вочные растворы наблюдаемая картина существенно не изменяется, однако наблюдает-
ся рост толщины плотного слоя, идентифицируемого на изображениях как более темная 
область (рис. 1, б и г).

Измерение расстояния, на которое удаляется от поверхности граница структурного об-
разования с течением времени, показывает, что все системы проявляют тенденцию к замед-
лению (рис. 2, а). Кривые, соответствующие продвижению фронта структурообразования 
для составов с НМП или НМП/1,4-диоксан, имеют более пологий изгиб, чем у кривых, 
соответствующих продвижению фронта структурообразования для составов с ДМСО или 
смеси ДМСО с 1,4-диоксаном, что указывает на снижение скорости движения фронта фор-
мирования структуры.

По данным рис. 2, а были рассчитаны скорости распространения фронта структурооб-
разования в зависимости от глубины слоя (рис. 2, б) и установлено, что основное различие 
этого параметра для исследуемых формовочных растворов наблюдается лишь до достиже-
ния толщиной слоя значения 200 мкм, а затем скорости распространения фронта практи-
чески выравниваются. В случае растворов НМП/1,4-диоксан регистрируется самая низкая 
скорость распространения фронта практически по всей толщине, в то время как в случае 
чистого НМП низкая скорость распространения фронта наблюдается в приповерхностном 
слое, однако по мере продвижения вглубь мембраны скорость снижается значительно мед-
леннее, чем для других растворов. 
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Рис. 1. Эволюция структуры формовочных растворов поли(АН-со-МА) в ДМСО (а),  
ДМСО/1,4-диоксан (90/10) (б), НМП (в) и НМП/1,4-диоксан (90/10) (г)
Fig. 1. The structure evolution of the casting solutions containing poly(AN-co-MA) in DMSO (a),  
DMSO/1,4-dioxane (90/10) (b), NMP (c), and NMP/1,4-dioxane (90/10) (d)

Рис. 2. Зависимости глубины фронта структурообразования от времени (а) и скорости распростране- 
ния границы структурообразования от глубины слоя (б) для исследуемых формовочных растворов
Fig. 2. Dependence of the depth of structure formation boundary on the time (a) and the spread rate of  
the structure formation boundary on the layer depth (b) for the casting solutions under study
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2.2. Морфология и фильтрационные свойства полученных мембран. Поперечный 
скол полученных мембран охарактеризован с помощью СЭМ (рис. 3). Все мембраны имеют 
асимметричную структуру с большим количеством пальцевидных макропустот и плотным 
селективным слоем на поверхности. Из рис. 1 и 3 видно, что морфология, определенная по 
СЭМ-изображениям, хорошо согласуется с морфологией, наблюдаемой при исследовании 
кинетики осаждения.

Рис. 3. СЭМ-изображения бокового скола мембран, полученных из формовочных растворов 
поли(АН-со-МА) в ДМСО (а) ДМСО/1,4-диоксан (90/10) (б), НМП (в) и НМП/1, 4-диок- 
сан (90/10) (г)
Fig. 3. SEM images of the membrane cross-section obtained from the casting solution containing  
poly(AN-co-MA) in DMSO (a), DMSO/1,4-dioxane (90/10) (b), NMP (c), and NMP/1,4-dioxane (90/10) (d)

На основе данных СЭМ определена толщина плотного слоя для исследованных мем-
бран (табл. 2). Установлено, что добавление 1,4-диоксана приводит к увеличению толщи-
ны плотного слоя независимо от природы растворителя. Кроме того, введение 1,4-диоксана 
в формовочный раствор позволяет получить мембраны с меньшими MFP и dmax (табл. 2). 
Средний размер пор и размер наибольшей поры мембран, полученных с использованием 
ДМСО, уменьшаются в 1.3 и 1.5 раза соответственно, а у мембран, полученных с исполь-
зованием НМП – в 2.4 и 2.0 раза соответственно. Добавление мягкого осадителя приводит 
также к падению проницаемости по воде и толуолу, что непосредственно связано со сни-
жением MFP и dmax, причем эффект более выражен для мембран, полученных из составов с 
НМП (проницаемость по воде и толуолу снижается в 3.6 и 5.4 раз соответственно, тогда как 
в случае составов с ДМСО аналогичное снижение составляет 1.1 и 1.6 раз).
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Табл. 2. Характеристики полученных мембран
Table 2. Characteristics of the obtained membranes

Мембрана
Общая 

толщина, 
мкм

Толщина 
скин-слоя, 

мкм

Размер пор, нм Проницаемость,  
кг/(м2×ч×атм)

MFP dmax, вода толуол

М01 101 ± 12 13 ± 2 25 ± 2 83 ± 6 92 ± 8 52 ± 5
М02 111 ± 12 17 ± 3 19 ± 1 55 ± 15 87 ± 5 32 ± 2
М03 110 ± 9 5 ± 2 29 ± 2 55 ± 20 199 ± 10 118 ± 9
М04 78 ± 6 11 ± 2 12 ± 3 27.0±0.1 55 ± 4 22 ± 2

Сравнение размера пор с данными на рис. 2, б позволяет говорить, что мембраны, получен-
ные из растворов в НМП, характеризуются самым тонким скин-слоем и наибольшим размером 
пор, что в совокупности обеспечивает их высокую проницаемость (в 2–4 раза больше, чем у 
остальных полимеров). На большом удалении от поверхности контакта с осадителем скорость 
распространения фронта структурообразования логичным образом начинает коррелировать с 
проницаемостью получаемых мембран. То есть, большая скорость распространения фронта 
связана с тем, что сформированная в приповерхностном слое структура обеспечивает более бы-
стрый приток осадителя в более глубокие слои. В то же время можно предположить, что размер 
пор получаемых мембран должен коррелировать с вязкостью формовочного раствора, так как 
вязкость напрямую влияет на скорость массообмена в приповерхностном слое в начальный мо-
мент после контакта формовочного раствора с осадителем. Действительно, при нанесении на 
диаграмму безотносительных к образцу данных (рис. 4) прослеживается корреляция, согласно 
которой более высокая вязкость приводит к большему размеру пор. Однако при более детальном 
анализе становится ясно, что это справедливо только в случае НМП, для которого добавление 
1,4-диоксана снижает вязкость получаемого раствора. В случае ДМСО добавление указанно-
го осадителя приводит к увеличению вязкости формовочного раствора, однако размер пор все 
равно снижается. Из этого можно заключить, что влияние добавки 1,4-диоксана на размер пор 
полученных мембран является более комплексным, то есть включает в себя не только измене-
ние вязкости формовочного раствора, но также связано с изменением природы растворителя и 
уменьшением количества воды, необходимой для начала процесса фазового распада в системе.

Рис. 4. Корреляция размера пор получаемых мембран и вязкости формовочного раствора
Fig. 4. Correlation between the pore size of the resulting membranes and the viscosity of the casting solution
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2.3. Разделительные свойства исследуемых мембран. Для мембран М02 и М04, 
полученных с использованием 1,4-диоксана (см. табл. 1), исследованы фильтрационные ха-
рактеристики на примере разделения нефти и растворов нефти в толуоле (1, 10 и 100 г/л) 
(табл. 3). Для обеих мембран наблюдается закономерное снижение проницаемости с увели-
чением концентрации нефти в фильтруемом растворе.

Табл. 3. Характеристики мембран в процессе разделения нефти и растворов нефти в толуоле
Table 3. Membrane characteristics during the separation of oil and oil solutions in toluene

Мембрана
Проницаемость, кг/(м2×ч×атм) Задерживание асфальтенов, %

1 г/л 10 г/л 100 г/л нефть 1 г/л 10 г/л 100 г/л нефть

М02 30.3 ± 0.7 9.0 ± 0.8 0.4 ± 0.1 0.002 ± 0.001 11 ± 2 25 ± 1 98 ± 5 99.3 ± 0.4

М04 20 ± 1 9 ± 2 1.6 ± 0.2 0.017 ± 0.002 13 ± 1 32 ± 4 99 ± 8 98.5 ± 0.2

При фильтрации растворов нефти в толуоле с концентрацией 1 и 10 г/л мембраны де-
монстрируют высокие значения проницаемости при минимальной величине задерживания 
асфальтенов. Это указывает на то, что при таких степенях разбавления свойства жидко-
сти близки к толуолу, а содержащиеся в нефти асфальтены находятся в неассоциированном 
виде, благодаря чему могут свободно проходить через мембрану. При повышении концен-
трации нефти в фильтруемой смеси до 100 г/л и в случае неразбавленной нефти прони-
цаемость мембран существенно снижается, а задерживание асфальтенов резко возрастает  
до > 98 %, что связано с формой существования асфальтенов в виде агломератов, которые не 
могут пройти через мембрану. Это приводит к возникновению эффекта концентрационной 
поляризации, в результате чего на поверхности мембраны образуется гель-слой из асфаль-
тенов, существенно снижающий ее проницаемость.

2.4. Оценка засорения мембран. Засорение мембран и разработка методов их ре-
генерации являются наиболее важными критериями успешного применения ультрафиль-
трационных мембран в реальных процессах [18, 37]. Накопление растворенного вещества, 
удерживаемого на поверхности мембраны, приводит к увеличению сопротивления пото-
ку пермеата, что, в свою очередь, снижает производительность системы [38]. Для оценки 
склонности мембран к засорению и возможностей последующей регенерации измерены 
значения TFR, RFR, IFR и FRR (рис. 5).

Поток пермеата снижается с ростом концентрации нефти в фильтруемой смеси для обе-
их мембран, что проявляется в увеличении параметра общего засорения TFR в диапазоне 
от 4.90 до 99.99 % для мембраны М02 и от 7.90 до 99.90 % для мембраны М04 (рис. 5, a). 
Общее засорение мембраны можно разделить на две составляющие: обратимое и необра-
тимое засорение. Обычно при рассмотрении обратимости подразумевают устойчивость к 
каким-либо видам очистки [39]. Обратимое засорение – это тип засорения, который мож-
но легко удалить с помощью определенных методов очистки, в то время как необратимое 
загрязнение полностью устранить невозможно [40]. Рассмотрен наиболее простой способ 
регенерации – прямое промывание мембран толуолом. Значения параметров обратимого 
(рис. 5, в) и необратимого (рис. 5, г) засорения показывают, что для разбавленных растворов 
нефти (1 и 10 г/л) большая часть засорения является обратимой, а для концентрированного 
раствора нефти (100 г/л) и неразбавленной нефти засорение является необратимым.
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Рис. 5. Параметры засорения мембран (коэффициент общего загрязнения (TFR) (а), коэффициент 
восстановления потока (FRR) (б), коэффициент обратимого загрязнения (RFR) (в), и коэффициент 
необратимого загрязнения (IFR) (г)) при фильтрации нефти и растворов нефти в толуоле
Fig. 5. Fouling parameters of the membranes (total fouling ratio (TFR) (a), flux recovery ratio (FRR) (b), 
reversible fouling ratio (RFR) (c), and irreversible fouling ratio (IFR) (d)) during the filtration of oil and oil 
solutions in toluene

Заключение

В ходе исследования оценено влияние 1,4-диоксана как мягкого осадителя в формовоч-
ные растворы на основе сополимера ПАН–ПМА в смешанных растворителях. Установлено 
существенное влияние на реологические свойства растворов и процессы фазового разделе-
ния при формировании мембран методом инверсии фаз NIPS в присутствии 1,4-диоксана. 
В системе поли(АН-со-МА)/НМП происходит снижение динамической вязкости раствора c 
39.1 до 26.9 Па×с, а в системе поли(АН-со-МА)/ДМСО вязкость раствора возрастает с 33.0 
до 37.8 Па×с, что может быть связано с различиями в термодинамическом взаимодействии 
между компонентами. Проведенный анализ кинетики фазового разделения и визуализация 
процесса осаждения позволили выявить особенности структурообразования в различных 
системах и установить прямую корреляцию между скоростью осаждения и вязкостью рас-
твора, что подтверждает важность контроля реологических свойств формовочного раствора 
для получения мембран с заданными характеристиками.

Изменение состава растворителя и добавление мягкого осадителя позволяют регу-
лировать размер пор мембран, обеспечивая возможность их использования для решения 
конкретных задач разделения в нефтехимии. Мембраны, полученные с использованием 
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1,4-диоксана, демонстрируют улучшенные характеристики в разделении нефтяных систем, 
в частности высокую эффективность выделения асфальтенов (задерживание составляет 
98–99 %) при фильтрации как разбавленных, так и концентрированных нефтяных раство-
ров. Полученные мембраны характеризуются стабильной производительностью и высокой 
степенью восстановления потока (до 99 %), поскольку при фильтрации разбавленных рас-
творов нефти основная часть загрязнения мембран является обратимой и легко устраняется 
простым промыванием толуолом, что имеет значение для практического применения в ус-
ловиях многократного использования мембран.

Таким образом, использование 1,4-диоксана в качестве сорастворителя представляет 
собой технологически простой и эффективный метод управления структурой полимерных 
мембран, который может быть применен при разработке ультрафильтрационных мембран 
для разделения нефтяных систем, очистки органических растворов и других процессов.
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Аннотация

Исследованы температурные зависимости коэффициентов диффузии, растворимости и про-
ницаемости образцов лестничного полифенилсилсесквиоксана (л-ПФСС) с тремя молекулярными 
массами: 400, 600 и 1000 кДа. Полученные газотранспортные параметры и температурные коэф-
фициенты образцов л-ПФСС сопоставлены с аналогичными характеристиками других кремний-
содержащих полимеров. Установлено, что по этим свойствам наиболее близким к исследуемому 
полимеру является не структурно родственный полидиметилсилоксан (ПДМС), а стеклообразный 
поливинилтриметилсилан (ПВТМС). Значения полученных по температурным зависимостям те-
плот сорбции для исследуемых образцов ближе к представленным в литературе данным для поли-
триметилсилилпропина (ПТМСП), тогда как значения энергий активации диффузии ближе к тако-
вым для ПДМС и ПВТМС, что может свидетельствовать о наличии в л-ПФСС замкнутых элементов 
свободного объема, сравнимых по размеру с таковыми для ПТМСП. Тенденция роста коэффициента 
проницаемости л-ПФСС с температурой показывает преимущественное влияние диффузионной со-
ставляющей. Показано отсутствие влияния молекулярной массы л-ПФСС на его газотранспортные 
свойства в диапазоне 400–1000 кДа. Таким образом, получение асимметричных и композицион-
ных мембран ограничено исключительно механическими свойствами и растворимостью л-ПФСС  
с различной молекулярной массой.

Ключевые слова: коэффициент проницаемости, коэффициент диффузии, энергия активации 
диффузии, энергия активации проницаемости, лестничный полифенилсилсесквиоксан.
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Abstract

The temperature dependences of the diffusion, solubility, and permeability coefficients for ladder-like 
polyphenylsilsesquioxane (L-PPSQ) samples with molecular weights of 400, 600, and 1000 kDa were 
analyzed. A comparison, in terms of the gas transport parameters and temperature coefficients, with other 
silicon-containing polymers revealed that L-PPSQ is most similar to glassy polyvinyltrimethylsilane 
(PVTMS) rather than to polydimethylsiloxane (PDMS), which is structurally related to it. The heat 
of sorption values obtained for the studied samples using the temperature dependences are consistent 
with those from the literature for polytrimethylsilylpropyne (PTMSP), while their diffusion activation 
energies are more in agreement with PDMS and PVTMS, which may indicate the presence of enclosed 
free volume elements in L-PPSQ, comparable in size to the ones in PTMSP. The observed tendency 
of the permeability coefficient to increase with temperature confirms the dominant contribution  
of the diffusion component of permeability in L-PPSQ. The molecular weight of L-PPSQ was found to 
have no influence on its gas transport properties in the range of 400–1000 kDa. Therefore, the production 
of asymmetric and composite membranes is limited solely by the mechanical properties and solubility  
of L-PPSQ with different molecular weights.

Keywords: permeability coefficient, diffusion coefficient, diffusion activation energy, permeability 
activation energy, ladder-like polyphenylsilsesquioxane
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Введение

Кремнийсодержащие полимеры активно исследуются в рамках мембранного матери-
аловедения, так как многие представители таких полимеров обладают набором свойств, 
позволяющим внедрять эти материалы в промышленные процессы мембранного разделе-
ния газов. Они относятся к различным классам полимеров, в том числе высокоэластиче-
ским (силоксановые каучуки [1]) и стеклообразным (полинорборнены [2–4], полиацетиле-
ны [5–7] и др.). Кроме того, кремнийсодержащие полимеры характеризуются различным 
уровнем газопроницаемости, что позволяет выделить среди них высокопроницаемые (по-
литриметилсилилпропин (ПТМСП) [7, 8], аддитивные полинорборнены [3, 4]), среднепро-
ницаемые (поливинилтриметилсилан (ПВТМС) [9], метатезисные полинорборнены [2])  
и низкопроницаемые (полиимиды с кремнийсодержащими диангидридами [10] или диа-
минами [11]) полимеры. В промышленных процессах газоразделения широко применяют 
силоксановые каучуки (например, полидиметилсилоксан (ПДМС)). Как правило, это вы-
сокоэластические полимеры, которые за счет особенностей структуры имеют гибкие и 
подвижные цепи, а также высокий свободный объем, что выгодно для разделения смесей 
углеводородов, а также других органических смесей.

В отличие от линейных полисилоксанов лестничный полифенилсилсесквиоксан 
(л-ПФСС) относится к стеклообразным полимерам. Его лестничная структура определяет 
такие уникальные свойства, как термическая и окислительная стабильность, механическая 
прочность, а способность растворяться в различных органических растворителях обеспе-
чивает перерабатываемость данного полимера в изделия. Такой набор свойств обусловил 
интерес к л-ПФСС, поэтому метод синтеза л-ПФСС со времен первого его получения в 
1960 году [12] усовершенствовался с целью снижения расхода реагентов и обеспечения 
стабильности характеристик данного материала [13–16]. В начале 90-х годов XX века  
в работе [17] проведено исследование коэффициента проницаемости л-ПФСС (образец  
с Mw ~ 500–1000 кДа) при одной температуре (25 °C для O2 и N2, 35 °C для CO2 и CH4). 
Установлено, что вопреки ожиданиям такой полимер оказался не очень эффективным мо-
лекулярным ситом, однако результаты оценки межцепных расстояний показали возмож-
ное наличие большого свободного объема в л-ПФСС, что делает его привлекательным для 
подробного изучения в качестве мембранного материала. В работе [18] были получены 
образцы л-ПФСС с различной молекулярной массой (400, 600 и 1000 кДа). Настоящая ра-
бота является продолжением исследования полученных образцов с точки зрения перспек-
тивы их применения в мембранном разделении газов. Основной акцент сделан на оценке 
газотранспортных свойств л-ПФСС с различной молекулярной массой в зависимости от 
температуры и получении температурных коэффициентов газотранспортных параметров. 
Кроме того, изучено влияние молекулярной массы л-ПФСС на характеристики газоперено-
са, чтобы оценить значимость этого параметра для процессов формования мембран.

1. Материалы и методы

1.1. Материалы. Очистку растворителей проводили в соответствии с процедурой, опи-
санной в [19]. Толуол перегоняли над гидридом кальция в атмосфере аргона. В работе ис-
пользовали гидроксид натрия, пиридин, триметилхлорсилан и HCl от Aldrich (Германия), а 
также безводный аммиак от Spectra Gases Inc. (Канада). Цис-тетрафенилциклотетрасилоксанол  
получали согласно описанной ранее методике [20].
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1.2. Синтез л-ПФСС с молекулярной массой 400 и 600 кДа (л-ПФСС-400  
и л-ПФСС-600). Исходный мономер загружали в стальной автоклав (V = 20 мл), в который 
при захолаживании до −50 °С закачивали аммиак. Затем автоклав термостатировали при  
100 °С (для л-ПФСС-400) или 150 °С (для л-ПФСС-600) в течение 4 ч, после чего проводи-
ли декомпрессию аммиака. В результате были получены полимеры с молекулярной массой  
400 кДа (Mw = 398 кДа, Mn = 135 кДа и PDI = 2.9) и 600 кДа (Mw = 588 кДа, Mn = 182 кДа и 
PDI = 3.2) с выходами 98 и 96 % соответственно.

1.3. Синтез л-ПФСС с молекулярной массой 1000 кДа (л-ПФСС-1000). Если про-
дукт реакции, полученный в ходе синтеза при 150 °С в течение 4 ч, подвергнуть повторной  
реакции конденсации в тех же условиях, можно получить л-ПФСС с молекулярной массой 
~1000 кДа (л-ПФСС-1000). Такой эффект достигается за счет удаления воды, выделяющей-
ся в ходе процесса конденсации, из зоны реакции при декомпрессии аммиака. Таким спосо-
бом был получен полимер с молекулярной массой 1000 кДа (Mw = 1057 кДа, Mn = 344 кДа и 
PDI = 3.1) с выходом 93 %.

1.4. Характеристики л-ПФСС. Молекулярную массу полученных полимеров опре-
деляли методом гель-проникающей хроматографии на хроматографе LC-20 Prominence 
(Shimadzu Corporation, Япония) с рефрактометрическим (RID-20А) и фотодиодным  
(SPD-M20A) детекторами на колонке Phenogel 105 Å (размер (300×7.8 мм)) с использовани-
ем в качестве элюента тетрагидрофурана. Внутренним стандартом выступал полистирол. 
Данные по среднемассовой (Mw), среднечисловой (Mn) молекулярной массе исследованных 
полимеров, а также их индекс полидисперсности (PDI) представлены в разделах 1.2 и 1.3.

Температуру стеклования определяли методом дифференциальной сканирующей кало-
риметрии на приборе Mettler Toledo DSC 3+ (Mettler Toledo, США). Показано, что темпера-
тура стеклования л-ПФСС выше температуры разложения (>500 °C) для всех рассматрива-
емых образцов.

1.5. Получение сплошных пленок из л-ПФСС и измерение их газотранспортных 
свойств. Пленки для измерения газотранспортных свойств получали из 2 %-ного (масс.) 
раствора в хлороформе посредством отливки на коммерческий целлофан. Целлофан растя-
гивали на металлическом кольце диаметром 7.5 см и фиксировали. Кольцо устанавливали 
на стеклянном столике целлофаном вниз. Затем с помощью пипетки с фильтром из мине-
ральной ваты наносили на целлофан раствор полимера и накрывали металлическое кольцо 
чашкой Петри, оставляя просвет (~0.5 см) между кольцом и чашкой для медленного испа-
рения растворителя. Систему выдерживали несколько дней с последующей сушкой до до-
стижения постоянной массы образца. Затем с помощью дистиллированной воды отделяли 
пленку от целлофана и дополнительно просушивали и вакуумировали в течение нескольких 
дней. Толщина полученных пленок составляла 20–30 мкм.

Отсутствие остаточного растворителя доказывали с помощью термогравиметрического 
анализа на приборе Derivatograph-C (МОМ, Венгрия) на воздухе и в аргоне при скорости 
нагревания 10 °С/мин в диапазоне температур от 35 до 950 °С. Изменение масс образцов в 
диапазоне температур до 250 °С не превышало 2 %, что свидетельствует о низком содержа-
нии остаточного хлороформа в образцах пленок.

Для измерения газотранспортных свойств из полученных пленок вырезали диск диаме-
тром 4.6 см. Коэффициенты проницаемости (P) и диффузии (D) измеряли барометрическим 
методом на термостатируемой установке с датчиком давления Baratron (MKS Instruments, 
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США) при температурах около 25, 35 и 45 °C, давлении над мембраной 800–900 Торр и 
давлении под мембраной 0–5 Торр. Это позволяет исключить проницаемость и диффузию 
в направлении, обратном направлению потока газа. Для оценки коэффициента диффузии 
использовали метод Дэйнеса–Баррера (по времени запаздывания) и расчет проводили по 
уравнению 1

						      (1)

где d – толщина исследуемой пленки (см), а θ – время запаздывания (с). Измерения стацио-
нарного потока через пленку проводили при времени эксперимента более (4−6)θ.

Коэффициенты растворимости (S) определяли как S = P/D.
Изначально измерения проводили на установке с масляным насосом, который позво-

лял достигать глубокого вакуума до 10−3 Торр. Однако ошибка линеаризации темпера-
турных коэффициентов для л-ПФСС-1000 была достаточно велика, поэтому дальнейшие 
измерения для л-ПФСС-600 и л-ПФСС-400 проводили на установке с двумя насосами: 
мембранным (вакуум до 1 Торр) и турбомолекулярным (вакуум до 10−3–10−4 Торр). Сопо-
ставимость значений P, D и S, получаемых на разных установках, проверена на двух плен-
ках л-ПФСС-600, и показано отсутствие статистически значимых отличий параметров с 
учетом погрешностей.

1.6. Ошибки измерений газотранспортных свойств. Ошибка измерения коэффици-
ента диффузии суммируется из удвоенной погрешности определения толщины пленки и 
погрешности определения времени запаздывания. Ошибка измерения коэффициента про-
ницаемости складывается из погрешности определения натекания в подмембранный объем, 
погрешности измерения надмембранного давления, погрешности определения толщины и 
удвоенной погрешности определения диаметра пленки. Таким образом суммарная ошибка 
измерения не превышает 5 % для P, 10 % для D и 20 % для расчетного значения S.

2. Результаты и их обсуждение

2.1. Температурные зависимости газотранспортных параметров л-ПФСС. Уста-
новлены коэффициенты проницаемости, диффузии и растворимости для образцов пленок 
л-ПФСС с молекулярной массой 1000, 600 и 400 кДа при трех температурах (табл. 1).

Для оценки положения исследованных образцов л-ПФСС среди других кремнийсо-
держащих полимеров построены зависимости lnD от эффективного диаметра диффузан-
та (d  2 [11]) и зависимости lnS от потенциала парного взаимодействия Леннард-Джонса  
(ε/k [11]), которые представлены на рис. 1. Как видно из рис. 1, a, зависимости lnD  
от d  2 для высокопроницаемых ПДМС (Mw ~ 100 кДа, Tg ~ −130 °C) и ПТМСП  
(Mw ~ 1350 кДа, Tg ~ 280 °C) лежат значительно выше, чем для ПВТМС (Mw ~ 1000 кДа,  
Tg ~ 150–180 °C) и исследуемых образцов л-ПФСС, а также угол наклона данных зависи-
мостей больше для всех рассмотренных стеклообразных полимеров по сравнению с углом 
наклона зависимости для ПДМС. Это показывает, что исследованные образцы л-ПФСС 
по величине и характеру диффузии газов схожи со среднепроницаемым стеклообразным 
полимером ПВТМС.
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Табл. 1. Газотранспортные параметры для л-ПФСС при давлении ~1 атм и температурах 25, 35 и 45 °C
Table 1. Gas transport parameters of L-PPSQ at a pressure of ~1 atm and temperatures of 25, 35, and 45 °C

Газ P, Баррер D×108, см2/с S, см3(н.у.)/(см3×атм)
л-ПФСС, Mw = 1000 кДа

25 °C 35 °C 45 °C 25 °C 35 °C 45 °C 25 °C 35 °C 45 °C
He 29 28 36 ― ― ― ― ― ―
H2 49 46 57 ― ― ― ― ― ―
O2 18 16 19 35 39 55 0.40 0.31 0.27
N2 5.2 4.8 6.0 13 17 32 0.30 0.21 0.14

CO2 123 111 113 21 26 41 4.5 3.2 2.1
CH4 11 11 13 5.5 8.7 15 1.5 1.0 0.67

л-ПФСС, Mw = 600 кДа
25 °C 35 °C 45 °C 25 °C 35 °C 45 °C 25 °C 35 °C 45 °C

He 33 41 49 ― ― ― ― ― ―
H2 58 70 82 ― ― ― ― ― ―
O2 23 26 29 39 51 68 0.45 0.38 0.33
N2 7.3 8.1 9.7 17 22 31 0.34 0.28 0.24

CO2 173 174 180 33 43 59 4 3 2.4
CH4 15 18 21 8.0 12 18 1.3 1.0 0.87

л-ПФСС, Mw = 400 кДа
25 °C 35 °C 45 °C 25 °C 35 °C 45 °C 25 °C 35 °C 45 °C

He 33 40 47 ― ― ― ― ― ―
H2 57 66 78 ― ― ― ― ― ―
O2 20 23 26 36 48 62 0.42 0.36 0.32
N2 5.9 7.0 8.5 15 21 31 0.30 0.26 0.21

CO2 147 150 158 28 39 53 3.9 2.9 2.3
CH4 13 15 19 7.3 11 17 1.3 1.0 0.85

Рис. 1. Зависимости lnD от d 2 (а) и lnS от ε/k (б) для ряда кремнийсодержащих полимеров (образцы 
л-ПФСС с Мw = 400–1000 кДа при 25 °C, ПВТМС [9], ПТМСП [8] и ПДМС [1])
Fig. 1. Plots lnD vs. d 2 (a) and lnS vs. ε/k (b) for some silicon-containing polymers (L-PPSQ samples with 
Mw = 400–1000 kDa at 25 oC, PVTMS [9], PTMSP [8], and PDMS [1])
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Для зависимостей lnS от ε/k нижнюю и верхнюю границы на рис. 1, б формируют ПДМС 
и ПТМСП соответственно. При этом различия между значениями коэффициентов раство-
римости этих двух полимеров составляют ~2 порядка. Исследуемые образцы л-ПФСС, как 
и ПВТМС, занимают промежуточное положение между ПДМС и ПТМСП. Таким образом, 
образцы л-ПФСС по величинам коэффициентов растворимости имеют сходство с ПВТМС.

Полученные результаты позволяют считать, что ПФСС, будучи стеклообразным поли-
мером, проявляет свойства, которые сходны со свойствами других кремнийсодержащих 
стеклообразных полимеров, а не структурно-родственного ПДМС.

Для пленок л-ПФСС построены температурные зависимости для P, D и S (рис. 2).

Рис. 2. Температурные зависимости газотранспортных параметров (P (а, г, ж), D (б, д, з), S (в, е, и)) 
для л-ПФСС-1000 (а–в), л-ПФСС-600 (г–е) и л-ПФСС-400 (ж–и)
Fig. 2. Temperature dependences of gas transport parameters (P (а, d, g), D (b, e, h), S (c, f, i)) for 
L-PPSQ-1000 (a–c), L-PPSQ-600 (d–f), and L-PPSQ-400 (g–i)

Коэффициенты диффузии возрастают с повышением температуры, а коэффициенты 
растворимости убывают, что соответствует классическим представлениям о характере за-
висимостей коэффициентов диффузии и растворимости от температуры. Анализ рис. 2, а, 
г и ж показывает небольшое возрастание коэффициентов проницаемости с повышением 
температуры, что может указывать на больший вклад коэффициента диффузии в темпера-
турные зависимости проницаемости.
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По уравнениям Аррениуса были рассчитаны температурные коэффициенты газотранс-
портных параметров. Коэффициенты EP, ED и ΔHS представлены в табл. 2.

Табл. 2. Кажущаяся энергия активации проницаемости (EP), энергия активации диффузии (ED)  
и теплота сорбции (ΔHS) для исследуемых л-ПФСС и ряда других кремнийсодержащих полимеров
Table 2. Apparent permeability activation energy (EP), diffusion activation energy (ED), and heat of sorp-
tion (ΔHS) of the studied L-PPSQ and some other silicon-containing polymers

Газ
EP, кДж/моль

л-ПФСС-1000 л-ПФСС-600 л-ПФСС-400 ПДМС [1] ПВТМС [9] ПТМСП [8]

He 8.2 14.8 13.8 ― 13.4 2.18

H2 5.8 13.0 12.0 ― 14.7 ―

O2 2.2 9.8 10.8 8.7 12.6 −6.36

N2 5.5 11.6 14.2 10.1 15.9 −4.9

CO2 −3.1 1.5 2.8 −0.7 5.9 −10.84

CH4 6.3 13.8 14.1 6.8 [21] 13.0 −6.49

ED, кДж/моль

O2 17.0 22.2 21.0 ― 18.0 4.9

N2 34.0 25.9 28.0 ― 18.4 6.1

CO2 25.1 22.1 24.7 ― 17.6 6.5

CH4 37.5 30.7 32.6 12.6 23.9 7.5

ΔHS, кДж/моль

O2 −14.6 −12.4 −10.5 ― −5.4 −11.3

N2 −28.0 −14.4 −13.7 ― −2.5 −11.0

CO2 −28.5 −19.0 −20.4 ― −11.7 −17.4

CH4 −30.1 −15.3 −16.5 -5.8 −10.9 −13.9

Сравнение данных по температурным коэффициентам газотранспортных параметров 
для образцов л-ПФСС (табл. 2) показывает, что энергии активации проницаемости и диф-
фузии л-ПФСС значительно отличаются от соответствующих значений для высокопроница-
емого полимера ПТМСП и существенно приближаются к значениям для ПДМС и ПВТМС. 
Однако величины теплоты сорбции для исследуемых образцов ближе к значениям, пред-
ставленным в литературе для ПТМСП. Одним из вероятных объяснений этого может быть 
образование в л-ПФСС замкнутых (несвязных) элементов свободного объема с размером, 
сопоставимым с таковым для ПТМСП. Для подтверждения подобной гипотезы требуется 
проведение дополнительного исследования организации свободного объема в полимере ме-
тодом спектроскопии времени жизни аннигиляции позитрония либо методами молекуляр-
но-динамического моделирования.

2.2. Зависимости газотранспортных параметров л-ПФСС от молекулярной  
массы. На рис. 3 приведены зависимости коэффициентов проницаемости, диффузии и рас-
творимости от молекулярной массы образца при 25 °C. В пределах ошибки эксперимента все 
три параметра остаются практически постоянными. Таким образом, при получении мембран 
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из образцов с более низкой молекулярной массой снижения газотранспортных параметров 
не ожидается. Следовательно, при планировании исследования асимметричных и компози-
ционных мембран на основе л-ПФСС основным фактором, влияющим на выбор молекуляр-
ной массы полимера, будет механическая прочность получаемых изделий, а также раствори-
мость полимера. Эти сведения могут помочь в постановке процессов формования мембран 
из л-ПФСС с оптимальным сочетанием физико-химических и газоразделительных свойств.

Рис. 3. Зависимости газотранспортных параметров (P (а), D (б), S (в)) при 25 °C от молекулярной 
массы л-ПФСС 
Fig. 3. Dependences of gas transport parameters (P (а), D (b), S (c)) on the molecular weight of L-PPSQ 
at 25 °C

Заключение

Результаты оценки газотранспортных свойств образцов лестничного полифенилсилсе-
сквиоксана (л-ПФСС) с молекулярными массами 400, 600 и 1000 кДа при температурах 
25, 35 и 45 °C демонстрируют перспективность дальнейшего изучения л-ПФСС в качестве 
мембранного материала. Наблюдаемые температурные зависимости газотранспортных па-
раметров, а также влияние на них молекулярной массы полимера открывают возможности 
для подбора оптимальных свойств композиционных мембран на основе л-ПФСС для ре-
шения конкретных задач газоразделения. Показано, что формование мембранных изделий 
будет ограничиваться лишь технологическими параметрами (растворимость, механические 
свойства). Несмотря на то, что л-ПФСС не является высокопроницаемым полимером, его 
уникальные свойства (термическая и химическая стабильность) в сочетании с возможно-
стью «тонкой регулировки» газотранспортных характеристик, делают его привлекательным 
кандидатом для использования в экстремальных условиях или для разделения сложных га-
зовых смесей, то есть в тех случаях, когда стабильность и селективность имеют перво-
степенное значение. Дальнейшие исследования, направленные на модификацию структуры 
л-ПФСС и создание композиционных мембран на его основе, могут значительно расширить 
область применения этого материала в мембранной технологии.
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Карбонизированные биополимеры как новый класс экологичных 
термостабилизирующих модификаторов силоксановых резин
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Аннотация

Введение гибридных нанокомпозитов на основе частиц графена, поверхность которого модифи-
цирована нанодисперсными частицами SiO2, позволяет значительно улучшить термостабильноcть 
силоксановых материалов. Карбонизацией рисовой шелухи по разработанному методу самораспро-
страняющегося высокотемпературного синтеза получен гибридный нанокомпозит – малослойный 
графен/SiO2. Установлено, что введение карбонизированного крахмала и карбонизированной рисо-
вой шелухи в резиновые смеси на основе полидиметилсилоксана приводит к незначительному уве-
личению скорости процесса вулканизации и продолжительности индукционного периода. Оценены 
упругопрочностные характеристики изготовленных из экспериментальных смесей образцов резины 
в рамках физико-механических испытаний до и после теплового старения в течение 72 ч при темпе-
ратуре 250 °С. Полученные результаты подтверждают эффективность использования синтезирован-
ных добавок в качестве термостабилизаторов силоксановых резин.

Ключевые слова: графеновые нанопластины, карбонизированная рисовая шелуха, силоксано-
вые резиновые смеси, вулканизационные характеристики, упругопрочностные свойства, термоокис-
лительная деструкция.
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Abstract

The introduction of hybrid nanocomposites with graphene particles in which surfaces are modified 
by nano-dispersed SiO2 significantly improves the thermal stability of siloxane materials. By carbonizing 
rice husk using a tailored method of self-propagating high-temperature synthesis, a hybrid nanocomposite, 
low-layer graphene/SiO2, was obtained. Upon the incorporation of carbonized starch and carbonized rice 
husk into rubber mixtures based on polydimethylsiloxane, the vulcanization proceeded at an increased rate 
with a longer induction period. The resulting experimental mixtures were used to produce rubber samples 
subjected to physical and mechanical testing before and after thermal aging for 72 h at 250 °C in order 
to determine their elastic and strength characteristics. Overall, the outcomes of these tests confirm the 
effectiveness of the synthesized additives as thermal stabilizers for siloxane rubbers.

Keywords: graphene nanoplatelets, carbonized rice husk, siloxane rubber compounds, vulcanization 
characteristics, elastic and strength characteristics, thermal aging

For citation: Frantsuzova Yu.V., Neverovskaya A.Yu., Voznyakovskii A.P., Vozniakovskii A.A. Carbonized 
biopolymers as a new class of environmentally friendly thermostabilizing modifiers of siloxane rubbers. 
Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2025, vol. 167, no. 4, pp. 702–712. 
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Введение

Силоксановые полимеры являются основой наиболее термостойких эластичных ма-
териалов [1]. Однако задача повышения термостойкости силоксановых резин не теряет 
своей актуальности. В качестве термостабилизаторов силоксановых резин используют 
высокодисперсные оксиды переходных металлов, например, CeO2, Fe2O3, TiO2 или их ком-
бинации [2].

Развитие нанотехнологий в последние десятилетия привело к разработке целой группы 
высокодисперсных веществ, перспективных для использования в качестве модификаторов, 
придающих материалам ценные качества [3]. Для лабораторных исследований стали до-
ступны аллотропные формы наноуглерода: фуллерены, нанотрубки, графен. Показано, что 
многостенные углеродные нанотрубки и графеновые структуры могут быть использованы в 
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качестве эффективных термостабилизаторов силоксановых резин [4–6]. Дальнейший поиск 
эффективных термостабилизаторов эластомерных материалов привел к модификациям 2D 
углеродных материалов. Установлено, что введение гибридного материала графен/SiO2 в 
состав полимерных материалов подавляет процессы термической деструкции и улучшает 
их огнестойкость [7], а введение гибридного материала, состоящего из частиц графена, по-
верхность которого модифицирована нанодисперсными частицами SiO2, позволяет значи-
тельно улучшить термостабильноcть силоксановых материалов [8].

В настоящее время в качестве источника углерода активно используют растительное 
сырье, которое подвергают карбонизации. Одним из примеров такого сырья является рисо-
вая шелуха, которая содержит до 30 % SiO2, а ее органическая составляющая представляет 
собой, в основном, сочетание полисахаридов, целлюлозы и лигнина. Карбонизация рисо-
вой шелухи по методу самораспространяющегося высокотемпературного синтеза (СВС) 
для получения гибридного материала графен/SiO2 представляет интерес. Перспективность 
решения такой задачи обусловлена еще и тем, что карбонизация рисовой шелухи позволит 
решить проблемы переработки отходов сельскохозяйственной деятельности, связанной с 
производством многотоннажного продукта [9]. Последнее обстоятельство немаловажно для 
улучшения экологической обстановки в странах –производителях риса.

Цель работы – оценка влияния карбонизированных по методу СВС рисовой шелухи и 
крахмала на теплостойкость силоксановых резин.

1. Материалы и методы

1.1. Материалы и способы их получения. В работе использована шелуха риса, вы-
ращенного в Краснодарском крае («АгроМер», Россия). В качестве базового компаунда 
использована резиновая смесь на основе полидиметилсилоксана ELASTOSIL® R401/40 S 
(Wacker Chemie AG, Германия). Для сравнения теплостойкости полученных в работе резин 
применяли термостабилизатор ELASTOSIL® AUX Н4 (Wacker Chemie AG, Германия) – си-
локсановая паста с высоким содержанием Fe2O3. Также в работе использовали вулканизу-
ющий агент – дикумилпероксид (AkzoNobel, Нидерланды), NH4NO3 марки х.ч. и крахмал 
растворимый марки ч.д.а. («ЛенРеактив», Россия).

Рисовую шелуху измельчали в лабораторной планетарной мельнице LP-1 (HT Machinery, 
Тайвань) до размеров частиц 100 мкм (± 10 мкм) и доводили до постоянной массы в сушиль-
ном шкафу ШС-40-02 (ОАО «Смоленское СКТБ СПУ», Россия) при 80 °С.

Рисовую шелуху и крахмал использовали в качестве сырья для получения продуктов 
карбонизации по методу самораспространяющегося высокотемпературного синтеза [10]. 
Карбонизацию проводили с использованием лабораторного реактора, представляющего 
собой кварцевый сосуд (емкость 1 л) с нагревательным элементом в нижней части, обе-
спечивающим нагрев зоны реакции до 500 °С. Контроль температуры в зоне реакции осу-
ществляли с помощью термопары. Навески подготовленного сырья и NH4NO3 в массовом 
соотношении 1 : 1 механически перемешивали в смесителе типа «пьяная бочка» в течение 
15 мин. Полученную однородную смесь объемом не более 0.3 л помещали в предваритель-
но продутый током сухого аргона (5 мин) и прогретый до 150 °С реактор. Затем поднимали 
температуру реактора до 200 °С. Продолжительность процесса составляла 5–8 мин. Выход 
реакции по карбонизированной рисовой шелухе и карбонизированному крахмалу составил 
40 и 30 % соответственно.

Синтезированные продукты вводили в резиновую смесь ELASTOSIL® R401/40 S на 
лабораторных вальцах ЛБ 320 160/160 (ООО «Полимермаш Групп», Россия) в течение 
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3 мин при температуре валков 25–30 °С. Вулканизующий агент в количестве 0.7 массо-
вых частей (м. ч.) на 100 м. ч. смеси вводили на вальцах сразу после добавок в течение 
5 мин. Таким образом, было подготовлено 9 смесей для выпуска вулканизатов, включая 
базовую смесь без добавок. Вулканизацию заготовок из нескольких отобранных проб ка-
ждой смеси проводили через 24 ч после введения вулканизующего агента. Вулканизацию 
резиновых смесей проводили в вулканизационном электропрессе под давлением 3.5 МПа 
при 165 °С в течение 15 мин. Вторую стадию вулканизации (термостатирование) прово-
дили при 200 °С в течение 4 ч. Выдерживание образцов между стадиями вулканизации 
проводили при температуре окружающей среды в течение 1 ч. Технологический режим 
вулканизации осуществляли в соответствии с рекомендациями производителя резиновой 
смеси ELASTOSIL® R401/40 S.

1.2. Методы исследования. Электронные изображения и элементный анализ карбони-
зированных продуктов были получены методом сканирующей электронной микроскопии на 
приборе Tescan Mira 3-M (TESCAN, Чехия) с EDX приставкой X-Max (Oxford Instruments, 
Великобритания). Ускоряющее напряжение составляло 20 кэВ.

Регистрацию ИК-спектров проводили на инфракрасном Фурье-спектрометре Spectrum 
100 (PerkinElmer, США) в режиме нарушенного полного внутреннего отражения в спек-
тральном диапазоне 4000–600 см−1 с разрешением 0.5 см−1 и числом сканирований, равным 
четырем.

Определение вулканизационных характеристик резиновых смесей проводили на безро-
торном реометре МDR-2000 (Alpha Technologies, США) при температуре 165 °С в течение 
25 мин согласно ГОСТ Р 54547-2011 [11]. Для определения вулканизационных характери-
стик образцы резиновых смесей помещали в камеру реометра между двух платформ. Изме-
нение крутящего момента, вызываемого колебаниями нижней платформы с определенной 
частотой и амплитудой, отражает изменение вязкоупругого состояния образца в течение 
заданного времени. Определяли средние значения показателей по испытаниям трех проб 
каждой смеси. Расхождение показателей составляло не более 10 %. Определение вулкани-
зационных характеристик (минимальный крутящий момент ML, максимальный крутящий 
момент MH, время индукции tS1 (время достижения значения крутящего момента, боль-
шего ML на 1 ед. измерения), время достижения 50 и 90 % вулканизации t50(90)) проводили 
через 24 ч после введения вулканизующего агента.

Проведение физико-механических испытаний вулканизатов осуществляли в соответ-
ствии с ГОСТ 270-75 [12]. Испытания проводили через 24 ч после вулканизации на разрыв-
ной машине Н10КТ (Tinius Olsen, Великобритания). Управление разрывной машиной и ма-
тематическую обработку экспериментальных данных проводили с помощью программного 
комплекса QMAT PRO. Усилие при испытаниях фиксировали датчиком нагрузки до 500 Н 
(погрешность измерений 1 %), деформацию – лазерным детектором (погрешность измере-
ния ± 0.005 мм). Определение условной прочности при растяжении и относительного удли-
нения при разрыве до термического старения проводили по 10 параллельным испытаниям 
образцов (лопаток), вырубленных из пластин, вулканизованных из каждой смеси. За резуль-
тат испытаний принимали среднее арифметическое показателей всех испытанных образцов 
из одной резиновой смеси. При отклонении результатов испытаний от средней величины 
прочности более чем на ± 10 % их не учитывали, а среднее арифметическое вычисляли из 
оставшихся образцов, число которых составляло не менее трех. Показатели условной проч-
ности и относительного удлинения представлены как среднее арифметическое показателей 
8–10 образцов из одной закладки каждой резиновой смеси.
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Испытания стойкости недеформированных резин к термическому старению в воздухе 
при температуре 250 °C в течение 72 ч проводили согласно ГОСТ 9.024-74 [13]. Ускоренно-
му термическому старению подвергали комплекты из шайбы и 10 лопаток, изготовленных 
из каждой смеси. Через 24 ч после термического старения оценивали упругопрочностные 
свойства образцов.

Твердость по Шору А до и после теплового старения определяли с помощью стационар-
ного твердомера ТВР-А (погрешность измерения ±1 ед.) в соответствии с ГОСТ 263-75 [14]. 
За результат испытания принимали среднее арифметическое измерений в пяти точках шай-
бы, округленное до целого числа. Допускаемое отклонение каждого измерения от среднего 
арифметического значения составляло ± 3 единицы. 

2. Результаты и их обсуждение

2.1. Продукты карбонизации. Методом электронной сканирующей микроскопии  
получены изображения фрагмента частицы карбонизированной рисовой шелухи (рис. 1), 
которые имеют чешуйчатую форму, характерную для графеновых нанопластин [15].

Рис. 1. Электронные микрофотографии частиц карбонизированной рисовой шелухи с разрешением 
200 нм (а) и 20 мкм (б)
Fig. 1. Electron micrographs of carbonized rice husk particles at resolutions of 200 nm (a) and 20 μm (b)

Методом энергодисперсионной рентгеновской спектроскопии установлен состав частиц 
карбонизированной рисовой шелухи (табл. 1). Выдвинуто предположение, что 15.45 % (ат.) 
кремния приходится на 30.90 % (ат.) кислорода в SiO2, остальные атомы кислорода связаны 
с атомами углерода и азота. Наличие азота в составе частиц обусловлено использованием 
NH4NO3 в ходе синтеза.

Табл. 1. Элементный анализ частиц карбонизированной рисовой шелухи
Table 1. Elemental analysis of carbonized rice husk particles

Элемент Атомная доля, % Массовая доля, %
С 37.94 27.99
Si 15.45 26.65
O 43.00 42.26
N 3.60 3.10
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Методом ИК-спектроскопии получены данные по химической организации частиц кар-
бонизированной рисовой шелухи (рис. 2, а). Для сравнения приведен ИК-спектр частиц 
карбонизированого крахмала (рис. 2, б), 2D углеродная структура (графеновые нанопласти-
ны) которых подтверждена различными методами [10]. В ИК-спектре частиц карбонизиро-
ванной рисовой шелухи наблюдается интенсивный пик, соответствующий связи Si-O, что 
подтверждает наличие SiO2. Таким образом, можно предположить, что карбонизированная 
рисовая шелуха представляет собой композит малослойного графена и SiO2. Массовая доля 
SiO2 составляет ~ 60 % (масс.).

Рис. 2. ИК-спектры порошка карбонизированной рисовой шелухи (а) и карбонизированного 
крахмала (графеновые нанопластины) (б)
Fig. 2. IR spectra of carbonized rice husk powder (a) and carbonized starch (graphene nanoplatelets) (b)

2.2. Резиновые смеси. Резиновая смесь ELASTOSIL® R401/40 S на основе полиди-
метилсилоксана характеризуется высокой воспроизводимостью физико-механических по-
казателей вулканизатов, что является приоритетом при выборе базовой смеси для оценки 
эффективности модифицирующих добавок. Изготовлены смеси с введением 1.0, 2.0, 3.0, 
4.0 м. ч. карбонизированной рисовой шелухи и 0.50, 1.0, 2.0, 4.0 м. ч. карбонизированного 
крахмала в расчете на 100 м. ч. резиновой смеси.

При введении модификаторов в готовые резиновые смеси технологический режим вул-
канизации не должен существенно меняться. Поэтому оценены вулканизационные характе-
ристики исходной и модифицированных резиновых смесей (табл. 2).
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Табл. 2. Вулканизационные характеристики силоксановых резиновых смесей с различным 
содержанием карбонизированного крахмала и карбонизированной рисовой шелухи 
Table 2. Vulcanization characteristics of siloxane rubber compounds with different contents of carbonized 
starch and carbonized rice husk

Модификатор
Содержание 

модификатора, 
м. ч.

Показатели

ML, дН×м MH, дН×м ts1, мин t50, мин t90, мин

― 0.00 0.36 ± 0.01 6.77 ± 0.07 0.79 ± 0.01 1.27 ± 0.01 3.74 ± 0.04

Карбонизиро- 
ванный крахмал

0.50 0.38 ± 0.01 6.73 ± 0.07 0.80 ± 0.02 1.24 ± 0.02 2.68 ± 0.03
1.0 0.37 ± 0.00 6.60 ± 0.07 0.88 ± 0.02 1.35 ± 0.01 2.82 ± 0.03
2.0 0.36 ± 0.01 6.82 ± 0.07 0.86 ± 0.01 1.33 ± 0.02 2.85 ± 0.03
4.0 0.37 ± 0.02 7.37 ± 0.07 0.87 ± 0.02 1.38 ± 0.02 3.05 ± 0.03

Карбонизиро- 
ванная рисовая 

шелуха

1.0 0.32 ± 0.01 6.03 ± 0.06 0.87 ± 0.01 1.38 ± 0.01 3.34 ± 0.03
2.0 0.37 ± 0.00 6.33 ± 0.06 0.88 ± 0.02 1.36 ± 0.01 3.00 ± 0.03
3.0 0.33 ± 0.01 6.25 ± 0.06 0.88 ± 0.01 1.35 ± 0.01 3.05 ± 0.03
4.0 0.38 ± 0.02 6.59 ± 0.07 0.85 ± 0.01 1.31 ± 0.01 2.97 ± 0.03

Можно выделить тенденции некоторых изменений вулканизационных характеристик 
модифицированных резиновых смесей по сравнению с характеристиками базовой смеси, 
в частности, увеличение индукционного периода и увеличение скорости вулканизации (t90) 
при снижении скорости в первом полупериоде (t50). Это, вероятно, связано с хемосорбцией 
радикалов, образующихся в результате гомолитического расщепления дикумилпероксида, 
на поверхности частиц, благодаря наличию неспаренного электрона в sp2-гибридизиро-
ванном состоянии атомов углерода графеновой структуры, способного задержать радикал,  
и/или в доступных дефектах графеновых структур, в которых связи атомов углерода с ато-
мами других элементов обеспечивают химическую активность. При температурном воздей-
ствии образовавшиеся связи разрываются, что приводит к резкому увеличению концентра-
ции активных радикалов в матрице и, как следствие, более быстрому завершению процесса. 
Зафиксированные отклонения вулканизационных характеристик модифицированных сме-
сей незначительны и не требуют изменений параметров технологического режима изготов-
ления вулканизатов, рекомендованных производителем ELASTOSIL® R401/40 S.

2.3. Вулканизаты. Для полученных из резиновых смесей вулканизатов проведены фи-
зико-механические испытания. Определены упругопрочностные характеристики вулкани-
затов до и после термического старения в течение 72 ч при температуре 250 °С (табл. 3). 
Остаточное удлинение после разрыва образцов до термического старения составляло от 4 
до 6 %, что свидетельствует о полноте формирования вулканизационной сетки в матрице.

При увеличении концентрации модификаторов в резиновых смесях прослеживается 
увеличение твердости вулканизатов. Можно предположить, что увеличение твердости вы-
звано формированием физической сетки наночастицами, обладающими активной и разви-
той поверхностью. При увеличении нагрузки материала из-за частиц возникают локаль-
ные очаги напряжения, что приводит к разрушению матрицы и, как следствие, снижению 
прочности на разрыв и относительного удлинения вулканизатов. Однако оба синтезиро-
ванных продукта (карбонизированные крахмал и рисовая шелуха) проявляют качества 
термостабилизаторов. Относительное удлинение модифицированных резин после термо-
старения многократно превышает относительное удлинение образцов без добавок (тепло-
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стойкость резин определяют прежде всего по изменению относительного удлинения в 
результате теплового старения).

Табл. 3. Упругопрочностные характеристики вулканизатов силоксановых резиновых смесей с 
различным содержанием карбонизированного крахмала и карбонизированной рисовой шелухи
Table 3. Elastic and strength characteristics of vulcanizates of siloxane rubber compounds with different 
contents of carbonized starch and carbonized rice husk

Модификатор
Содержание 

модификатора, 
м. ч.

Показатели до/после термического старения
Условная 

прочность при 
растяжении, МПа

Относительное 
удлинение при 

разрыве, %

Твердость 
(по Шору А), 

ед.
― 0.00 9.1 / 1.1 700 / 30 40 / 80

Термостабилизатор 
ELASTOSIL® AUX Н4

3.0 
(рекомендуемое 
производителем)

8.7 / 5.3 690 / 590 42 / 38

Карбонизированный 
крахмал

0.50 8.7 / 2.5 690 / 210 40 / 68
1.0 8.8 / 4.1 720 / 470 40 / 38
2.0 8.5 / 5.1 690 / 570 42 / 38
4.0 7.6 / 4.2 640 / 480 45 / 38

Карбонизированная 
рисовая шелуха

1.0 9.0 / 3.2 690 / 400 39 / 34
2.0 8.6 / 3.3 670 / 470 39 / 30
3.0 8.5 / 3.4 640 / 490 40 / 33
4.0 7.6 / 3.4 620 / 480 42 / 33

Сопоставление свойств модифицированных карбонизированным крахмалом и карбо-
низированной рисовой шелухой вулканизатов после теплового старения показывает, что 
продукт карбонизации крахмала более эффективно подавляет деструкцию материала при 
термоокислении. Однако, несмотря на содержание углерода в карбонизированной рисовой 
шелухе ~28 % (в карбонизированном крахмале оно составляет ~90 % [10]), ее добавление 
также достаточно эффективно ингибирует термоокислительную деструкцию резины.

Меньшая твердость модифицированных резин после термостарения по сравнению с ба-
зовой резиной свидетельствует об отсутствии структурирования, происходящего в результате 
глубокой деструкции силоксановых цепей вплоть до SiO2. Учитывая приведенные выше пред-
положения об участии графеновых структур в процессе вулканизации, можно предположить, 
что подавление термоокислительной деструкции полимерных цепей в резинах происходит 
благодаря «захвату» образующихся при расщеплении Si-O-Si связи полимерных радикалов 
активными центрами дефектов 2D углеродных структур, что препятствует более глубокому 
разрушению полимерной матрицы. При этом часть активных радикалов может расходоваться 
на разрушение физической сетки в полимерной матрице, образованной поверхностно актив-
ными частицами, что также ослабляет термоокислительную деструкцию материала.

Заключение

На основе проведенных исследований структуры и состава можно предполагать, что 
продуктом карбонизации рисовой шелухи по методу самораспространяющегося высоко-
температурного синтеза является композит углеродных соединений 2D структуры и SiO2. 
Введение добавок карбонизированной рисовой шелухи и карбонизированного крахмала 
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в резиновую смесь на основе полидиметилсилоксана приводит к существенному улучше-
нию теплостойкости вулканизатов, что подтверждает перспективность и актуальность ра-
боты. Некоторые изменения вулканизационных характеристик и подавление деструкции 
материала при термоокислении, вероятно, связаны с возможностью хемосорбции радика-
лов на поверхности и в дефектах графеновых структур. Физическая сетка, образованная в 
полимерной матрице наночастицами, также вносит вклад в теплостойкость полимерных 
материалов.
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Выбор катализаторов и оптимизация процесса отверждения 
бензоксазиновых связующих

В.С. Никитин1, Л.М. Амирова1, К.А. Андрианова1, Р.Р. Амиров2 

1Казанский национальный исследовательский технический университет им. А.Н. Туполева – КАИ, 
г. Казань, Россия  

2Казанский (Приволжский) федеральный университет, г. Казань, Россия 
ramirov@kpfu.ru

Аннотация

В работе рассмотрен процесс отверждения бензоксазиновой смолы в присутствии различных 
катализаторов. Проведено сравнительное исследование их каталитической активности и выбран 
катализатор, позволяющий наиболее эффективно снизить температуру отверждения бензоксазина. 
Оценено влияние содержания катализатора на отверждение бензоксазиновой смолы и рассчита-
ны энергии активации процесса, а также кинетические параметры по данным дифференциальной 
сканирующей калориметрии (ДСК) с помощью программного пакета Thermokinetics3. Показана 
возможность управления фронтом температуры и конверсии связующего за счет послойного из-
менения его состава (варьирование содержания катализатора в бензоксазиновой композиции) по 
толщине изделия, что обеспечивает изменение реакционной способности связующего. На основе 
полученных данных подобран одноступенчатый режим отверждения бензоксазинового связую-
щего, позволяющий сократить цикл отверждения изделия за счет формования композита в режиме 
динамического нагрева.

Ключевые слова: бензоксазины, катализаторы, дифференциальная сканирующая калориме-
трия, отверждение, градиент матрицы.
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for benzoxazine binders
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Abstract

The process of benzoxazine resin curing in the presence of various catalysts was investigated. The 
catalytic activities were compared to identify the catalyst that most effectively reduced the benzoxazine 
curing temperature. The effect of the catalyst content on the curing of benzoxazine was assessed. The 
activation energies for the curing process were determined. The curing kinetics parameters were calculated 
from differential scanning calorimetry (DSC) data using Thermokinetics3 software. The possibility to control 
the temperature front and conversion of the binder through layer-by-layer changing of its composition  
(by varying the content of the catalyst in the benzoxazine system) across the thickness of the product, and 
thus altering the binder reactivity, was demonstrated. Based on the results obtained, a single-stage curing 
mode of benzoxazine binder that shortens the curing cycle through composite molding under dynamic 
heating conditions was singled out.

Keywords: benzoxazines, catalysts, differential scanning calorimetry, curing, matrix gradient
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Введение

Бензоксазины, благодаря высокой теплостойкости и низкой горючести, являются пер-
спективным классом термореактивных мономеров для разработки связующих армиро-
ванных композитов [1]. Однако процесс отверждения наиболее многообещающих бензок-
сазинов происходит при высоких температурах, что значительно затрудняет получение 
композитов с высокими эксплуатационными характеристиками [2]. При этом предваритель-
ная полимеризация бензоксазиновых мономеров не оказывает существенного влияния на 
процесс последующего отверждения [3]. Увеличение скорости и снижение температуры по-
лимеризации бензоксазиновых смол являются актуальными задачами, для решения которых 
предложены различные подходы. Так, улучшение реакционной способности выявлено при 
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отверждении бензоксазина на основе фуриламина с использованием меламина в качестве 
источника амина [4]. Низкотемпературная сополимеризация между аминогруппой этилен-
диамина и кольцом бензоксазина приводит к образованию промежуточного продукта, со-
держащего амин, и композиции, медленно отверждающейся при пониженных температу-
рах [5]. Отверждение бензоксазинов промотируется фенольными нафтоксазинами [6], а для 
мономера 1,3-бензоксазина на основе дезоксибензоина наблюдается самокатализируемая 
катионная полимеризация с раскрытием цикла [7].

На примере широкого круга бензоксазинов с различными заместителями установлено, 
что температура полимеризации зависит от электронного строения заместителей в алкокси-
фенильном кольце [8]. Для бензоксазиновых смол на основе метазамещенных анилинов по-
казано противоположно направленное влияние электроноакцепторных и электронодонор-
ных заместитетей на температуру полимеризации (увеличение и снижение соответственно). 
Для полибензоксазина с электронодонорным заместителем в структуре наблюдается умень-
шение температуры стеклования, а в случае электроноакцепторного заместителя – повыше-
ние. Кроме того, показано, что введение заместителей приводит к уменьшению термической 
стабильности полибензоксазина и изменению механизма его термической деградации [9].

Одним из ключевых факторов, влияющих на температуру отверждения бензоксазинов, 
является катализатор, используемый в процессе отверждения. Кислоты Льюиса, кисло-
ты Бренстеда, металлоорганические и органические катализаторы и др. влияют на поли-
меризацию с раскрытием кольца 1,3-бензоксазина. Показана высокая активность кислот  
Льюиса [10], особенно PCl5 [11], и катиона лития в контролируемой полимеризации  
3,4-дигидро-2H-1,3-бензоксазина [12]. Соли церия [13] и других металлов [14, 15], аце-
тилацетонат меди(II) [16] и In(NO3)3 [17] также являются эффективными катализаторами 
отверждения бензоксазина. Описано снижение температуры полимеризации с раскрытием 
цикла 1,3-бензоксазинов в присутствии алкиламмониевых солей вследствие противоионно-
го эффекта, обусловленного нуклеофильностью противоиона. Значение температуры поли-
меризации уменьшается в следующем ряду противоионов: I− > Br− > Cl− [18].

Особый интерес представляет кислотно-катализируемый синтез полибензоксазинов [19].  
Установлено, что E- и Z-изомеры 3-метоксикоричной кислоты выступают как эффективные 
органокатализаторы полимеризации бензоксазинов [20]. В работе [21] в качестве кислот-
ных катализаторов рассмотрены бензойная, 4-диметиламинобензойная, 4-нитробензойная,  
4-гидроксибензойная, 4-формилбензойная, дифенил-4-карбоновая, 4-фторбензойная, 
4-трифторметилбензойная и галловая кислоты. Наилучшую эффективность показывает  
галловая кислота (3,4,5-триоксибензойная кислота или 3,4,5-тригидроксибензойная кисло-
та), обеспечивающая снижение температуры отверждения бензоксазинов до 130 °C. Пред-
ставляют интерес пути полимеризации бензоксазина в среде 0.1%-ной муравьиной кислоты 
по данным микроструктурного анализа [22], что дает информацию о механизме снижения 
температуры отверждения полимера.

Таким образом, кислотные катализаторы являются эффективными для получения поли-
бензоксазинов. Однако это направление недостаточно изучено, поэтому востребован срав-
нительный анализ активности различных органических кислот при отверждении бензок-
сазинов. Использование кислотных катализаторов для ускорения процесса полимеризации 
бензоксазинов может быть также актуальным при создании так называемых градиентных 
матриц для полимерных композиционных материалов на основе бензоксазиновых связую-
щих [23, 24]. Для матриц с градиентом состава требуется подбор условий отверждения в 
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каждом слое композита, а для этого необходимы катализаторы с различной активностью и 
данные о влиянии содержания катализаторов на процесс отверждения бензоксазинов.

Целью данной работы является сравнительная оценка активности ряда катализаторов 
полимеризации бензоксазинов, выбор наиболее эффективного катализатора и его содержа-
ния, а также установление оптимального режима отверждения бензоксазинов с использова-
нием выбранного катализатора.

1. Материалы и методы

В качестве бензоксазина использовали бензоксазин на основе бисфенола А, параформа 
и анилина (БА-а) (рис. 1), синтезированный безрастворным методом [25]. Для регистрации 
масс-спектров реакционных смесей использовали тандемный квадруполь-времяпролет-
ный хромато-масс-спектрометр Agilent iFunnel 6550 Q-TOF LC/MS (Agilent Technologies, 
США). Получены пики, соответствующие целевому соединению [C31H31N2O2]

+  
с m/z 463.2390 (теоретическое значение m/z 463.2380) и димеризованному бисбензоксази-
ну [C62H61N4O4]

+ с m/z 925.4681.

Рис. 1. Структура бензоксазина на основе бисфенола А, параформа и анилина
Fig. 1. Structure of benzoxazine based on bisphenol A, paraform, and aniline

В табл. 1 приведена информация о рассматриваемых в работе катализаторах отвержде-
ния бензоксазинов.

Табл. 1. Катализаторы и их характеристики
Table 1. Catalysts and their characteristics

№ Название Брутто 
формула Структурная формула M, г/

моль tпл, °С

1 2 3 4 5 6

1 Винная кислота С4Н6О6 150.09 168

2 Янтарная кислота С4Н6О4 118.09 183

3 Аминоуксусная кислота С2Н5О2N 75.07 234
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Окончание табл. 1 / End of Table 1

1 2 3 4 5 6

4 Малеиновая кислота С4Н4О4 116.07 135

5
Однозамещенная 

оксиэтилидендифосфоновая 
кислота

С2Н4КО7Р2 206.02 200

6 о-Фенилендиамин С6Н8N2 108.14 103

7 п-Фенилендиамина 
дигидрохлорид С6Н8N2∙2НСl 108.14 146

8 2,5-Дигидроксибензойная 
кислота C7H6O4 154.22 205

9 1,4-Циклогександикарбоновая 
кислота C8H12O4 172.18 31

10 2,4-Дигидроксибензойная 
кислота С7Н6О4 154.12 229

Процесс отверждения связующих изучали на дифференциальном сканирующем ка-
лориметре DSC 214 Polyma (Netzsch, Германия) согласно ISO 11357-5 [26] при скоростях 
нагрева 1, 2.5 и 5 К/мин. Кинетический анализ проводили на основе данных дифферен-
циальной сканирующей калориметрии (ДСК) с помощью программы Thermokinetics 3 
(Netzsch, Германия).

2. Результаты и их обсуждение

2.1. Активность катализаторов. Проведена оценка активности рассматриваемых ка-
тализаторов в смеси с беноксазином. На рис. 2 приведены ДСК-кривые составов на основе 
системы БА-а–катализатор с 1 %-ным содержанием последнего и чистого бензоксазина, по-
лученные при нагреве со скоростью 10 К/мин. Номер катализатора указан в табл. 1. Реакци-
онную способность композиций оценивали по начальным (tнач), пиковым (tпик) и конечным 
(tкон) температурам экзотермических эффектов (табл. 2).
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Рис. 2. ДСК кривые отверждения чистого БА-а (кривая 1) и композиций БА-а–винная кислота 
(кривая 2), БА-а–янтарная кислота (кривая 3), БА-а–аминоуксусная кислота (кривая 4),  
БА-а–малеиновая кислота (кривая 5), БА-а–однозамещенная оксиэтилидендифосфоновая кислота 
(кривая 6), БА-а–о-фенилендиамин (кривая 7), БА-а–п-фенилендиамина дигидрохлорид (кривая 8),  
БА-а–2,5-дигидроксибензойная кислота (кривая 9), БА-а–1,4-циклогександикарбоновая кислота 
(кривая 10) и БА-а–2,4-дигидроксибензойная кислота (кривая 11). Содержание катализатора 
составляет 1 %, скорость нагрева 10 К/мин
Fig. 2. DCS curves of the curing process for pure ВА-а (curve 1) and compositions such as  
ВА-а–tartaric acid (curve 2), ВА-а–succinic acid (curve 3), ВА-а–aminoacetic acid (curve 4),  
ВА-а–maleic acid (curve 5), ВА-а–monosubstituted oxyethylidenediphosphonic acid (curve 6),  
ВА-а–o-phenylenediamine (curve 7), ВА-а–p-phenylenediamine dihydrochloride (curve 8),  
ВА-а–2,5-dihydroxybenzoic acid (curve 9), ВА-а–1,4-cyclohexanedicarboxylic acid (curve 10), and 
ВА-а–2,4-dihydroxybenzoic acid (curve 11). Catalyst content 1 %, heating rate 10 K/min

Табл. 2. Данные ДСК анализа чистого БА-а и композиций БА-а–катализатор при скорости  
нагрева 10 К/мин
Table 2. DSC analysis data for ВА-а and ВА-а–catalyst compositions at the heating rate of 10 K/min

Образец tнач., °С tпика, °С tконеч, °С

БА-а 218.2 234.0 253.0
БА-а–винная кислота 188.9 221.5 249.3

БА-а–янтарная кислота 172.7 207.5 250.3
БА-а–аминоуксусная кислота 198.5 221.4 247.8

БА-а–малеиновая кислота 171.1 219.0 251.4
БА-а–однозамещенная оксиэтилидендифосфоновая кислота 199.0 222.9 245.1

БА-а–о-фенилендиамин 181.3 217.6 251.8
БА-а–п-фенилендиамина дигидрохлорид 167.0 219.0 241.7
БА-а–2,5-дигидроксибензойная кислота 158.7 220.8 269.1

БА-а–1,4-циклогександикарбоновая кислота 193.7 218.0 247.4
БА-а–2,4-дигидроксибензойная кислота 184.9 213.6 258.3

Из данных ДСК видно, что все кислотные катализаторы снижают температуру начала, 
пика и конца отверждения БА-а. При этом композиция БА-а–2,5-дигидроксибензойная кис-



В.С. Никитин и др. | Выбор катализаторов и оптимизация … 719

Учен. зап. Казан. ун-та. Сер. Естеств. науки | 2025;167(4):713–727

лота имеет самую низкую температуру начала отверждения, равную 158.7 °С, что указывает 
на высокую реакционную способность этой смеси. Таким образом, 2,5-дигидроксибензой-
ная кислота является более перспективным катализатором отверждения БА-а. Поэтому она 
была использована в дальнейших исследованиях.

2.2. Оценка влияния содержания катализатора. Для оптимизации процесса 
отверждения композиции БА-а–2,5-дигидроксибензойная кислота необходимо оценить вли-
яние содержания катализатора. С этой целью были подготовлены композиции, содержащие 
0.5, 1, 1.5, 2, 2.5, 3, 3.5 и 4 % катализатора, и получены кривые ДСК при различных скоро-
стях нагрева, по которым были установлены температуры начала, пика и конца отвержде-
ния. На рис. 3, а приведены зависимости температуры начала отверждения системы  
БА-а–2,5-дигидроксибензойная кислота от содержания катализатора, полученные при ско-
ростях нагрева 2.5, 5.0 и 10 К/мин.

Рис. 3. Зависимость температуры начала отверждения (а) и пика отверждения (б) системы  
БА-а–2,5-дигидроксибензойная кислота от содержания катализатора при различных скоростях 
нагрева
Fig. 3. Dependence of the curing onset (a) and peak (b) temperatures of the BA-a–2,5-dihydroxybenzoic 
acid system on the catalyst content at different heating rates

При всех скоростях нагрева температура начала отверждения существенно снижается 
с увеличением содержания катализатора до 2 %, а затем влияние практически не проявля-
ется. По достижении 4%-ного содержания катализатора температура начала отверждения 
практически выходит на предел. Температура пика отверждения системы БА-а–2,5-диги-
дроксибензойная кислота также уменьшается с ростом содержания катализатора (рис. 3, б),  
причем при достижении им значений >  2 % скорость снижения падает. Таким образом,  
2%-ное содержание катализатора в системе БА-а–2,5-дигидроксибензойная кислота являет-
ся достаточным.

2.3. Поиск режима отверждения БА-а. Для оценки энергии активации реакций 
отверждения составов на основе БА-а и 2,5-дигидроксибензойная кислоты (2 % (масс.)) 
использован изоконверсионный метод Фридмана на основе данных ДСК-термограмм, полу-
ченных при скоростях нагрева 2.5, 5.0 и 10 К/мин. Зависимость энергии активации процесса 
отверждения БА-а от содержания катализатора представлена на рис. 4. Энергия активации 
процесса существенно снижается по мере увеличения содержания катализатора до 2 %, а 
затем остается постоянной. То есть, для эффективного снижения температуры отверждения 
БА-а достаточно ввести 2 % 2,5-дигидроксибензойной кислоты.
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Рис. 4. Зависимость энергии активации процесса отверждения систем БА-а–2,5-дигидроксибензойная 
кислота от содержания катализатора
Fig. 4. Dependence of the activation energy of the curing process of the BA-a–2,5-dihydroxybenzoic acid 
systems on the content of the catalyst

2.3. Управление процессом отверждения бензоксазинового связующего путем 
создания градиента содержания катализатора. В процессе нагрева реакция отвержде-
ния термореактивного связующего начинается в первую очередь во внешнем слое компози-
та и продвигается к центру, в котором из-за плохого теплоотвода начинается перегрев. Во 
избежание этого явления температура отверждения связующего должна плавно снижаться 
при переходе от наружного слоя изделия к внутреннему. Как показано на примере эпоксид-
ного связующего, для достижения такого эффекта можно изменять соотношение отличаю-
щихся активностью отвердителей [27]. Управление процессом отверждения связующего на 
основе бензоксазинов возможно путем постепенного изменения содержания катализатора 
по толщине композитного изделия, то есть за счет создания градиента состава матрицы.

Схема изменения состава бензоксазинового связующего показана на примере образца 
цилиндрической формы, условно разделенного на 5 слоев (рис. 5, a).

Рис. 5. Схема послойного изменения состава (а) и температуры начала и пика отверждения (б) бен-
зоксазиновых связующих в слоях цилиндрического образца. Скорость нагрева 10 К/мин
Fig. 5. Scheme of the layer-by-layer change in the composition (a) and the onset and peak temperatures of 
curing (b) for benzoxazine binders in the layers of a cylindrical sample. Heating rate 10 K/min
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Выбор состава связующего в каждом слое проводили, исходя из задачи создания 
направленного от центра образца к наружным слоям фронта полимеризации. Поэтому 
центральный (пятый) слой градиентного образца состоит из бензоксазиновой компози-
ции с наибольшей реакционной способностью, то есть содержащей 2 % катализатора. 
Внешний (первый) слой формируется из бензоксазиновой композиции с наименьшей 
реакционной способностью, то есть бензоксазина без добавления катализатора. При 
переходе от пятого слоя к первому содержание катализатора в бензоксазиновом связу-
ющем плавно снижается. Как видно из данных ДСК на рис. 5, б, при переходе от на-
ружного слоя изделия к внутренним слоям температура начала процесса отверждения и 
температура пика снижаются.

Расчет изменения температуры и степени конверсии в слоях градиентного образца при 
нагреве в процессе отверждения проведен путем моделирования теплового баланса в систе-
ме с внутреннем тепловыделением в рамках модели Томаса [28] с помощью программного 
обеспечения Thermal Simulations. Процесс отверждения бензоксазиновых связующих с раз-
ным содержанием катализатора описан единым уравнением (уравнение 1), определяющим 
две параллельные реакции согласно модели Праута-Томпкинса и реакции n-ого порядка

			   (1)

где A1 и A2 – константы уравнения Аррениуса (с−1), E1 и E2 – энергии активации (Дж/моль), 
T – температура (К), R – универсальная газовая постоянная, (Дж/(моль×К)), n1, n2 и m – 
порядки реакции. Для аппроксимации процесса отверждения составов использован метод 
нелинейной регрессии. Полученные результаты представлены на рис. 6 на примере третьего 
(1 % катализатора) и пятого (2 % катализатора) слоев.

Рис. 6. Экспериментальные и аппроксимированные в рамках кинетической модели данные по 
отверждению третьего (1 % катализатора) (а) и пятого (2 % катализатора) (б) слоев
Fig. 6. Data, experimental and approximated within the kinetic model, on curing for the third (1 % catalyst) 
(a) and fifth (2 % catalyst) (b) layers

Изменение степени конверсии бензоксазинового связующего с градиентом состава ил-
люстрирует рис. 7, a. Фронт полимеризации в каждый момент времени направлен от вну-
тренних слоев цилиндра к внешним, что достигается размещением менее реакционноспо-
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собных составов бензоксазиновых связующих в более нагретых наружных слоях. Таким 
образом, отставание температуры центральных слоев от показаний печи в процессе нагрева 
компенсировано высокой активностью бензоксазинового связующего в центральных слоях 
композитного изделия.

Рис. 7. Конверсия бензоксазинового связующего в концентрических слоях образца (содержание 
2,5-дигидроксибензойной кислоты (%) составляет 0.00 (кривая 1), 0.50 (кривая 2), 1.0 (кривая 3), 
1.5 (кривая 4) и 2.0 (кривая 5)) (а) и оптимизированный одноступенчатый режим отверждения 
бензоксазинового связующего с градиентом состава (б)
Fig. 7. Conversion of benzoxazine binder in the concentric layers of the sample (2,5-dihydroxybenzoic 
acid content (%) 0.00 (curve 1), 0.50 (curve 2), 1.0 (curve 3), 1.5 (curve 4), and 2.0 (curve 5)) (a) and an 
optimized single-stage curing mode of benzoxazine binder with the composition gradient (b)

На основе кинетических данных, полученных из ДСК термограмм, с помощью програм-
мы Thermokinetics установлен режим отверждения бензоксазинового связующего, исходя 
из условия достижения постоянной скорости отверждения, соответствующей линейному 
росту степени конверсии. На основе расчетных данных предложен оптимальный (односту-
пенчатый) режим отверждения системы бензоксазин–катализатор (рис. 7, б).

Заключение

Методом дифференциальной сканирующей калориметрии исследован процесс 
отверждения бензоксазиновой смолы под действием различных катализаторов, среди ко-
торых наиболее эффективным является 2,5-дигидроксибензойная кислота. Показано, что 
ее добавление обеспечивает снижение температуры отверждения БА-а, причем 2 %-ное 
содержание катализатора можно считать достаточным для получения удовлетворительных 
результатов. Градиентное распределение катализатора по толщине изделия позволяет регу-
лировать процесс отверждения изделий из бензоксазинового связующего. Моделирование 
изменения температуры и степени конверсии во времени для бензоксазинового связующего 
с градиентом состава в концентрических слоях цилиндрического образца дает возможность 
исключить перегрев в процессе отверждения за счет градиентного распределения катализа-
тора по толщине изделия. Проведена оптимизация процесса отверждения бензоксазинового 
связующего и предложен одноступенчатый режим нагрева.
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Аннотация

Предложен способ количественной оценки степени композиционной однородности сополиме-
ров с помощью методов математического моделирования. Подход применим к сополимерам, для 
которых механизм формирования микроструктуры может быть описан в терминах цепей Маркова. 
Предложенный способ заключается в получении набора долей последовательностей звеньев задан-
ной длины из ЯМР спектра высокого разрешения (набор А) и последующем нахождении переход-
ных вероятностей методами математического моделирования Марковской матрицы, на основании 
которой можно построить модель полимерной цепи, содержащей набор долей последовательностей 
звеньев (набор Б), максимально близкий к набору А. В качестве количественного критерия степе-
ни композиционной однородности предложено использовать величину дисперсии, полученную при 
сравнении наборов А и Б.

Ключевые слова: композиционная однородность, микроструктура сополимеров, математиче-
ское моделирование, теория цепей Маркова.
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Abstract

This article introduces an innovative method for quantifying the degree of composition homogeneity in 
copolymers using mathematical modeling techniques. Applicable to copolymers for which the mechanism 
of microstructure formation can described in terms of the Markov chains, the method consists in obtaining 
a set of shares of unit sequences of a given length from a high-resolution NMR spectrum (set A) and then 
finding, through mathematical modeling of the Markov matrix, transient probabilities in order to build a 
model of a polymer chain containing such a set of shares of unit sequences (set B) that matches, as close as 
possible, set A. The dispersion resulting from the comparison of sets A and B is proposed as a quantitative 
criterion for the degree of composition homogeneity.

Keywords: composition homogeneity, copolymer microstructure, mathematical modeling, Markov 
chains theory
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Введение

Современные методы ЯМР высокого разрешения позволяют надежно определять доста-
точно длинные последовательности звеньев в полимерных цепях. Поэтому в последние де-
сятилетия появилось большое число работ в области исследования микроструктуры сопо-
лимеров и механизмов ее формирования. Помимо традиционного кинетического описания 
механизма формирования микроструктуры [1, 2], используется стохастическое описание 
процесса сополимеризации с привлечением теории цепей Маркова [3, 4], теории конечных 
автоматов [5], и другие подходы [6–8].

Наиболее распространенный аналитический метод исследования механизмов форми-
рования микроструктуры полимеров как для кинетического, так и для стохастического 
подходов заключается в установлении связей между относительными долями последо-
вательностей мономерных звеньев в полимерной цепи и определенными кинетическими 
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или стохастическими параметрами процесса полимеризации и последующем решении си-
стемы полученных уравнений. Чисто теоретически этот метод является логически непро-
тиворечивым, но на практике существуют два фактора, ограничивающих его применение. 
Во-первых, относительные доли последовательностей мономерных звеньев могут быть 
определены лишь с определенной погрешностью, обусловленной точностью интегриро-
вания сигналов в спектрах ЯМР, и, во-вторых, при проведении полимеризации необхо-
димо обеспечить максимальное постоянство кинетических или стохастических параме-
тров процесса, что далеко не всегда осуществимо [9]. Поэтому попытки решения системы 
уравнений зачастую приводят как к существенному снижению точности расчетов (еще в 
70-х годах ХХ века Келен и Тюдош [10] отметили, что величины констант сополимериза-
ции, полученных разными исследователями для одних тех же пар мономеров, характери-
зуются значительным разбросом), так и к некорректным результатам [11]. Кроме того, для 
успешного применения вышеупомянутого аналитического метода дополнительно требу-
ются полное отнесение сигналов цепи в ЯМР спектрах и их хорошее разрешение, что не 
всегда достижимо на практике.

Исследование механизмов формирования композиционной неоднородности сополиме-
ров началось во второй половине ХХ века [12–14], причем под термином «композиционная 
неоднородность» понималась ширина распределения полимеров как по составу, так и по 
молекулярной массе. Влияние различных факторов на молекулярно-массовое распределе-
ние полимеров к настоящему времени достаточно хорошо изучено. В то же время изучение 
механизмов влияния различных факторов на распределение молекул сополимеров по соста-
ву и их микроструктуру активно продолжается. К настоящему моменту принято выделять 
две основные причины, приводящие к формированию композиционной неоднородности по 
составу: статистическую, обусловленную вероятностной природой элементарных реакций 
роста цепи, и конверсионную, обусловленную любыми факторами, приводящими к изме-
нению относительной активности мономеров [9]. Конверсионную составляющую можно 
минимизировать, проводя сополимеризацию при небольшой конверсии мономеров или из-
меняя соответствующим образом условия процесса. Таким образом, максимально достижи-
мая композиционная однородность сополимера по составу определяется именно статисти-
ческой составляющей.

Судя по количеству публикаций, доля исследований, посвященных изучению стоха-
стических механизмов формирования микроструктуры сополимеров и, соответственно, 
композиционной неоднородности, достаточно велика. В первую очередь это относится к 
описанию процесса сополимеризации с помощью теории цепей Маркова [3, 15–22]. Так, 
например, в работах [15, 18] предложена теория «возмущенных» цепей Маркова для опи-
сания механизма формирования композиционной неоднородности, вызванной изменением 
условий в ходе процесса сополимеризации. Показано, что Марковская матрица переходных 
вероятностей, определяющая вероятности присоединения мономерных звеньев к растуще-
му макрорадикалу, может изменяться в определенных границах при изменении условий 
процесса. Для оценки степени изменения Марковской матрицы переходных вероятностей 
предложен довольно громоздкий математический аппарат, оперирующий многими параме-
трами, в том числе кинетическими константами. Установлено, что чем выше композицион-
ная неоднородность сополимера по составу, тем в больших пределах изменяется матрица 
переходных вероятностей [15].
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Вместе с тем, несмотря на значительное количество публикаций, посвященных изуче-
нию композиционной однородности сополимеров и факторов, влияющих на нее, общепри-
нятый метод оценки композиционной однородности пока отсутствует, хотя объективные 
критерии такой оценки могли бы быть востребованы промышленностью как дополнитель-
ное средство контроля качества выпускаемых полимеров.

В настоящей работе предложен метод оценки композиционной однородности сополи-
меров, механизм формирования микроструктуры которых может быть описан с помощью 
теории цепей Маркова. Оценка производится на основании данных спектров ЯМР высокого 
разрешения, причем метод позволяет использовать не полностью разрешенные сигналы в 
спектре, если известно, какие именно последовательности звеньев в них входят. Кроме того, 
метод не требует использования всех сигналов цепи. Единственное требование к формиро-
ванию набора исходных данных – включение всех сигналов цепи в область интегрирования.

Применимость метода продемонстрирована на примере двух образцов сополимеров ви-
нилиденфторида (ВДФ) и гексафторпропена (ГФП) с одинаковым составом, но полученных 
в различных условиях.

1. Материалы и методы

Все расчеты производили с помощью разработанной компьютерной программы, состо-
ящей из двух основных модулей: модуля для генерации модели полимерной цепи на осно-
вании заданной Марковской матрицы переходных вероятностей и модуля для расчета долей 
последовательностей звеньев заданной длины.

Модуль для генерации моделей полимерной цепи включал в себя генератор псевдослу-
чайных чисел, основанный на функции Rand(), входящей в набор стандартных библиотек 
MS Visual Studio 2017. Процедура проверки равномерности последовательности случайных 
чисел заключалась в генерации чисел в интервале от 0 до 1 и подсчете количества значе-
ний в диапазонах 0.000–0.001, 0.001–0.002 и т. д. до 0.999–1.000 включительно. Среднее 
отклонение от равномерного распределения, как правило, не превышало 1.0–1.5 %. Также 
испытан генератор случайных чисел для криптографии (класс RNGCryptoServiceProvider 
в MS Visual Studio 2017), но он показал несколько худшую равномерность распределения 
псевдослучайных чисел.

Программа генерировала множество матриц переходных вероятностей с учетом огра-
ничений, вытекающих из условий нормировки (сумма элементов матрицы в каждой строке 
равна единице), для каждого элемента множества находила набор относительных долей по-
следовательностей звеньев цепи, сравнивала получившийся набор долей последовательно-
стей с набором, полученным для реального полимера из данных спектра ЯМР и находила 
методом перебора по сетке матрицу переходных вероятностей, для которой различие между 
двумя наборами минимально. Расчет осуществляли для последовательностей, состоящих из 
пяти или семи атомов углерода.

Генерацию модели полимерной цепи производили методом Монте-Карло. Длина сге-
нерированных цепей составляла 106 мономерных звеньев, то есть 2×106 атомов углерода. 
Относительные доли последовательностей заданной длины определяли сканированием по-
лученной модели полимерной цепи со смещением на один атом углерода с последующим 
подсчетом количества вхождений последовательности и нормировкой.
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Сополимеры ВДФ и ГФП (образцы № 1 и № 2) синтезированы методом эмульсион-
ной сополимеризации при 60 °С в присутствии 0.5 % (масс.) натриевой соли перфторпе-
ларгоновой кислоты в качестве эмульгатора и 0.1 % (масс.) персульфат калия как иници-
атора. Для синтеза использовали следующие реактивы: ВДФ и ГФП марки ч. согласно  
ТУ 2412-137-05807960–2000 (ООО «ГалоПолимер», Россия), перфторпеларгоновую кис
лоту марки ч. по ТУ 2431-039-00209409-97 (ООО «Вектон», Россия) и персульфат калия 
марки ч.д.а. согласно ГОСТ 4146-74 (ООО «Вектон», Россия).

Методики синтеза отличались способом подачи мономеров в зону реакции. Для образца 
№ 1 использовали непрерывную раздельную подачу мономеров, а для образца № 2 – непре-
рывную подачу заранее приготовленной смеси мономеров. Состав сополимеров определяли 
по данным ЯМР 19F. Оба сополимера имели состав ВДФ : ГФП 74.9 : 25.1 % (мол.). Погреш-
ность измерения состава составляла ± 0.2 % (мол.). ЯМР спектры растворов сополимеров в 
ацетоне-d6 регистрировали на приборе Bruker AM-500 (Bruker, США). В качестве внутрен-
него стандарта использовали гексафторбензол. Отнесение сигналов последовательностей 
звеньев выполняли на основе данных, опубликованных в работе [23].

2. Результаты и их обсуждение

В процессе разработки метода оценки композиционной однородности сополимеров 
были приняты следующие допущения:

1)	 для композиционно неоднородного сополимера методами математического модели-
рования можно найти «усредненную» матрицу переходных вероятностей, на основе которой 
можно построить полимерную цепь с набором относительных долей последовательностей, 
максимально близким к реальному набору относительных долей последовательностей;

2)	 чем выше композиционная неоднородность сополимера по составу, тем сильнее бу-
дет расхождение между реальным и рассчитанным на основе «усредненной» матрицы пере-
ходных вероятностей наборами относительных долей последовательностей звеньев.

Исходные данные для расчетов были получены из 19F спектров ЯМР двух образцов 
сополимеров ВДФ и ГФП одинакового состава (рис. 1). Относительные доли последова-
тельностей звеньев цепи, рассчитанные по данным спектров, и результаты расчетов с ис-
пользованием вышеописанной компьютерной программы приведены в табл. 1. Наборы от-
носительных долей последовательностей звеньев, полученных из спектров ЯМР (набор А) 
и расчетным путем (набор Б), сравнивали с помощью формулы для дисперсии

где ni
A и ni

B – относительные доли последовательности i в наборах А и Б соответственно, а 
N – число последовательностей в наборе. При расчете дисперсии использованы только те 
последовательности, которые вошли в наборы А и Б. Для удобства представлена не сама 
величина S, а ее логарифм.
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Табл. 1. Относительные доли последовательностей по данным спектров ЯМР 19F (набор А) и расчета 
(набор Б) образцов сополимеров ВДФ и ГФП (жирным шрифтом выделены резонирующие атомы 
фтора)
Table 1. Relative shares of unit sequences measured by 19F NMR spectra (set A) and calculated (set B) for 
VDF/HFP copolymer samples (resonating fluorine atoms highlighted in bold)

Последовательность
Образец № 1 Образец № 2

Набор А 
(ЯМР)

Набор Б 
(расчет)

Набор А 
(ЯМР)

Набор Б 
(расчет)

CF2CH2CF2CF2CH2 + CH2CF2CF2CH2CF2 0.017 0.015 0.023 0.022

CF2CH2CF2CH2CF2 0.227 0.230 0.303 0.277

CF2CH2CF2CH2CH2 + CH2CH2CF2CH2CF2 0.005 0.004 0.012 0.011

CF2CH2CF2CH2CF + CFCH2CF2CH2CF2 0.152 0.147 0.163 0.153

CF2CH2CF2CFCH2 + CH2CFCF2CH2CF2 0.0004 0.0005 0.0002 0.0002

CH2CF2CF2CH2CH2 + CH2CH2CF2CF2CH2 0.012 0.012 0.015 0.010

CH2CF2CF2CH2CF + CFCH2CF2CF2CH2 0.012 0.013 0.012 0.016

Прочие последовательности 0.575 0.578 0.472 0.511

-lg(S) 5.24 3.93

Как видно из данных табл. 1, визуальное сравнение значений в наборах А и Б малоин-
формативно, однако величины дисперсии, рассчитанные для двух образцов сополимеров, 
существенно различаются. Как и следовало ожидать, сополимер, полученный в условиях 
раздельной подачи мономеров, имеет лучшую композиционную однородность.

Однако этих данных недостаточно для объективной оценки степени композиционной 
однородности сополимеров. Необходима величина, которую можно было бы принять за точ-
ку отсчета. В качестве такой величины предлагается дисперсия, рассчитанная для полимер-
ной цепи, построенной в условиях, исключающих влияние конверсионной составляющей. 
С этой целью проведен ряд расчетов, выполненных по следующей схеме. Выбирали про-
извольную матрицу переходных вероятностей, в каждой строке которой сумма элементов 
равна единице, на ее основе строили модель полимерной цепи и рассчитывали относитель-
ные доли последовательностей звеньев. Полученный набор долей последовательностей ис-
пользовали в качестве исходного набора А и производили дальнейший расчет по вышеопи-
санной схеме. В результате неоднократного повторения расчета с различными произвольно 
выбранными матрицами переходных вероятностей была получена величина дисперсии для 
модели полимерной цепи, композиционная неоднородность которой обусловлена только 
статистическими причинами, −lg(S) = 9.2 ± 0.4. Это значение рекомендуется использовать в 
качестве максимальной достижимой степени композиционной однородности.

Заключение

На примере образцов сополимеров ВДФ и ГФП с одинаковым составом, но получен-
ных в разных условиях, проведена оценка композиционной однородности сополимеров с 
использованием методов математического моделирования. Предложен количественный 
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критерий оценки степени композиционной однородности. В качестве параметра сравнения 
предложено использовать рассчитанную композиционную однородность модели полимер-
ной цепи, построенной в условиях, исключающих влияние конверсионной составляющей.
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