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Аннотация

Предложен способ количественной оценки степени композиционной однородности сополиме-
ров с помощью методов математического моделирования. Подход применим к сополимерам, для 
которых механизм формирования микроструктуры может быть описан в терминах цепей Маркова. 
Предложенный способ заключается в получении набора долей последовательностей звеньев задан-
ной длины из ЯМР спектра высокого разрешения (набор А) и последующем нахождении переход-
ных вероятностей методами математического моделирования Марковской матрицы, на основании 
которой можно построить модель полимерной цепи, содержащей набор долей последовательностей 
звеньев (набор Б), максимально близкий к набору А. В качестве количественного критерия степе-
ни композиционной однородности предложено использовать величину дисперсии, полученную при 
сравнении наборов А и Б.
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Abstract

This article introduces an innovative method for quantifying the degree of composition homogeneity in 
copolymers using mathematical modeling techniques. Applicable to copolymers for which the mechanism 
of microstructure formation can described in terms of the Markov chains, the method consists in obtaining 
a set of shares of unit sequences of a given length from a high-resolution NMR spectrum (set A) and then 
finding, through mathematical modeling of the Markov matrix, transient probabilities in order to build a 
model of a polymer chain containing such a set of shares of unit sequences (set B) that matches, as close as 
possible, set A. The dispersion resulting from the comparison of sets A and B is proposed as a quantitative 
criterion for the degree of composition homogeneity.
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Введение

Современные методы ЯМР высокого разрешения позволяют надежно определять доста-
точно длинные последовательности звеньев в полимерных цепях. Поэтому в последние де-
сятилетия появилось большое число работ в области исследования микроструктуры сопо-
лимеров и механизмов ее формирования. Помимо традиционного кинетического описания 
механизма формирования микроструктуры [1, 2], используется стохастическое описание 
процесса сополимеризации с привлечением теории цепей Маркова [3, 4], теории конечных 
автоматов [5], и другие подходы [6–8].

Наиболее распространенный аналитический метод исследования механизмов форми-
рования микроструктуры полимеров как для кинетического, так и для стохастического 
подходов заключается в установлении связей между относительными долями последо-
вательностей мономерных звеньев в полимерной цепи и определенными кинетическими 
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или стохастическими параметрами процесса полимеризации и последующем решении си-
стемы полученных уравнений. Чисто теоретически этот метод является логически непро-
тиворечивым, но на практике существуют два фактора, ограничивающих его применение. 
Во-первых, относительные доли последовательностей мономерных звеньев могут быть 
определены лишь с определенной погрешностью, обусловленной точностью интегриро-
вания сигналов в спектрах ЯМР, и, во-вторых, при проведении полимеризации необхо-
димо обеспечить максимальное постоянство кинетических или стохастических параме-
тров процесса, что далеко не всегда осуществимо [9]. Поэтому попытки решения системы 
уравнений зачастую приводят как к существенному снижению точности расчетов (еще в 
70-х годах ХХ века Келен и Тюдош [10] отметили, что величины констант сополимериза-
ции, полученных разными исследователями для одних тех же пар мономеров, характери-
зуются значительным разбросом), так и к некорректным результатам [11]. Кроме того, для 
успешного применения вышеупомянутого аналитического метода дополнительно требу-
ются полное отнесение сигналов цепи в ЯМР спектрах и их хорошее разрешение, что не 
всегда достижимо на практике.

Исследование механизмов формирования композиционной неоднородности сополиме-
ров началось во второй половине ХХ века [12–14], причем под термином «композиционная 
неоднородность» понималась ширина распределения полимеров как по составу, так и по 
молекулярной массе. Влияние различных факторов на молекулярно-массовое распределе-
ние полимеров к настоящему времени достаточно хорошо изучено. В то же время изучение 
механизмов влияния различных факторов на распределение молекул сополимеров по соста-
ву и их микроструктуру активно продолжается. К настоящему моменту принято выделять 
две основные причины, приводящие к формированию композиционной неоднородности по 
составу: статистическую, обусловленную вероятностной природой элементарных реакций 
роста цепи, и конверсионную, обусловленную любыми факторами, приводящими к изме-
нению относительной активности мономеров [9]. Конверсионную составляющую можно 
минимизировать, проводя сополимеризацию при небольшой конверсии мономеров или из-
меняя соответствующим образом условия процесса. Таким образом, максимально достижи-
мая композиционная однородность сополимера по составу определяется именно статисти-
ческой составляющей.

Судя по количеству публикаций, доля исследований, посвященных изучению стоха-
стических механизмов формирования микроструктуры сополимеров и, соответственно, 
композиционной неоднородности, достаточно велика. В первую очередь это относится к 
описанию процесса сополимеризации с помощью теории цепей Маркова [3, 15–22]. Так, 
например, в работах [15, 18] предложена теория «возмущенных» цепей Маркова для опи-
сания механизма формирования композиционной неоднородности, вызванной изменением 
условий в ходе процесса сополимеризации. Показано, что Марковская матрица переходных 
вероятностей, определяющая вероятности присоединения мономерных звеньев к растуще-
му макрорадикалу, может изменяться в определенных границах при изменении условий 
процесса. Для оценки степени изменения Марковской матрицы переходных вероятностей 
предложен довольно громоздкий математический аппарат, оперирующий многими параме-
трами, в том числе кинетическими константами. Установлено, что чем выше композицион-
ная неоднородность сополимера по составу, тем в больших пределах изменяется матрица 
переходных вероятностей [15].
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Вместе с тем, несмотря на значительное количество публикаций, посвященных изуче-
нию композиционной однородности сополимеров и факторов, влияющих на нее, общепри-
нятый метод оценки композиционной однородности пока отсутствует, хотя объективные 
критерии такой оценки могли бы быть востребованы промышленностью как дополнитель-
ное средство контроля качества выпускаемых полимеров.

В настоящей работе предложен метод оценки композиционной однородности сополи-
меров, механизм формирования микроструктуры которых может быть описан с помощью 
теории цепей Маркова. Оценка производится на основании данных спектров ЯМР высокого 
разрешения, причем метод позволяет использовать не полностью разрешенные сигналы в 
спектре, если известно, какие именно последовательности звеньев в них входят. Кроме того, 
метод не требует использования всех сигналов цепи. Единственное требование к формиро-
ванию набора исходных данных – включение всех сигналов цепи в область интегрирования.

Применимость метода продемонстрирована на примере двух образцов сополимеров ви-
нилиденфторида (ВДФ) и гексафторпропена (ГФП) с одинаковым составом, но полученных 
в различных условиях.

1. Материалы и методы

Все расчеты производили с помощью разработанной компьютерной программы, состо-
ящей из двух основных модулей: модуля для генерации модели полимерной цепи на осно-
вании заданной Марковской матрицы переходных вероятностей и модуля для расчета долей 
последовательностей звеньев заданной длины.

Модуль для генерации моделей полимерной цепи включал в себя генератор псевдослу-
чайных чисел, основанный на функции Rand(), входящей в набор стандартных библиотек 
MS Visual Studio 2017. Процедура проверки равномерности последовательности случайных 
чисел заключалась в генерации чисел в интервале от 0 до 1 и подсчете количества значе-
ний в диапазонах 0.000–0.001, 0.001–0.002 и т. д. до 0.999–1.000 включительно. Среднее 
отклонение от равномерного распределения, как правило, не превышало 1.0–1.5 %. Также 
испытан генератор случайных чисел для криптографии (класс RNGCryptoServiceProvider 
в MS Visual Studio 2017), но он показал несколько худшую равномерность распределения 
псевдослучайных чисел.

Программа генерировала множество матриц переходных вероятностей с учетом огра-
ничений, вытекающих из условий нормировки (сумма элементов матрицы в каждой строке 
равна единице), для каждого элемента множества находила набор относительных долей по-
следовательностей звеньев цепи, сравнивала получившийся набор долей последовательно-
стей с набором, полученным для реального полимера из данных спектра ЯМР и находила 
методом перебора по сетке матрицу переходных вероятностей, для которой различие между 
двумя наборами минимально. Расчет осуществляли для последовательностей, состоящих из 
пяти или семи атомов углерода.

Генерацию модели полимерной цепи производили методом Монте-Карло. Длина сге-
нерированных цепей составляла 106 мономерных звеньев, то есть 2×106 атомов углерода. 
Относительные доли последовательностей заданной длины определяли сканированием по-
лученной модели полимерной цепи со смещением на один атом углерода с последующим 
подсчетом количества вхождений последовательности и нормировкой.
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Сополимеры ВДФ и ГФП (образцы № 1 и № 2) синтезированы методом эмульсион-
ной сополимеризации при 60 °С в присутствии 0.5 % (масс.) натриевой соли перфторпе-
ларгоновой кислоты в качестве эмульгатора и 0.1 % (масс.) персульфат калия как иници-
атора. Для синтеза использовали следующие реактивы: ВДФ и ГФП марки ч. согласно  
ТУ 2412-137-05807960–2000 (ООО «ГалоПолимер», Россия), перфторпеларгоновую кис
лоту марки ч. по ТУ 2431-039-00209409-97 (ООО «Вектон», Россия) и персульфат калия 
марки ч.д.а. согласно ГОСТ 4146-74 (ООО «Вектон», Россия).

Методики синтеза отличались способом подачи мономеров в зону реакции. Для образца 
№ 1 использовали непрерывную раздельную подачу мономеров, а для образца № 2 – непре-
рывную подачу заранее приготовленной смеси мономеров. Состав сополимеров определяли 
по данным ЯМР 19F. Оба сополимера имели состав ВДФ : ГФП 74.9 : 25.1 % (мол.). Погреш-
ность измерения состава составляла ± 0.2 % (мол.). ЯМР спектры растворов сополимеров в 
ацетоне-d6 регистрировали на приборе Bruker AM-500 (Bruker, США). В качестве внутрен-
него стандарта использовали гексафторбензол. Отнесение сигналов последовательностей 
звеньев выполняли на основе данных, опубликованных в работе [23].

2. Результаты и их обсуждение

В процессе разработки метода оценки композиционной однородности сополимеров 
были приняты следующие допущения:

1)	 для композиционно неоднородного сополимера методами математического модели-
рования можно найти «усредненную» матрицу переходных вероятностей, на основе которой 
можно построить полимерную цепь с набором относительных долей последовательностей, 
максимально близким к реальному набору относительных долей последовательностей;

2)	 чем выше композиционная неоднородность сополимера по составу, тем сильнее бу-
дет расхождение между реальным и рассчитанным на основе «усредненной» матрицы пере-
ходных вероятностей наборами относительных долей последовательностей звеньев.

Исходные данные для расчетов были получены из 19F спектров ЯМР двух образцов 
сополимеров ВДФ и ГФП одинакового состава (рис. 1). Относительные доли последова-
тельностей звеньев цепи, рассчитанные по данным спектров, и результаты расчетов с ис-
пользованием вышеописанной компьютерной программы приведены в табл. 1. Наборы от-
носительных долей последовательностей звеньев, полученных из спектров ЯМР (набор А) 
и расчетным путем (набор Б), сравнивали с помощью формулы для дисперсии

где ni
A и ni

B – относительные доли последовательности i в наборах А и Б соответственно, а 
N – число последовательностей в наборе. При расчете дисперсии использованы только те 
последовательности, которые вошли в наборы А и Б. Для удобства представлена не сама 
величина S, а ее логарифм.
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Табл. 1. Относительные доли последовательностей по данным спектров ЯМР 19F (набор А) и расчета 
(набор Б) образцов сополимеров ВДФ и ГФП (жирным шрифтом выделены резонирующие атомы 
фтора)
Table 1. Relative shares of unit sequences measured by 19F NMR spectra (set A) and calculated (set B) for 
VDF/HFP copolymer samples (resonating fluorine atoms highlighted in bold)

Последовательность
Образец № 1 Образец № 2

Набор А 
(ЯМР)

Набор Б 
(расчет)

Набор А 
(ЯМР)

Набор Б 
(расчет)

CF2CH2CF2CF2CH2 + CH2CF2CF2CH2CF2 0.017 0.015 0.023 0.022

CF2CH2CF2CH2CF2 0.227 0.230 0.303 0.277

CF2CH2CF2CH2CH2 + CH2CH2CF2CH2CF2 0.005 0.004 0.012 0.011

CF2CH2CF2CH2CF + CFCH2CF2CH2CF2 0.152 0.147 0.163 0.153

CF2CH2CF2CFCH2 + CH2CFCF2CH2CF2 0.0004 0.0005 0.0002 0.0002

CH2CF2CF2CH2CH2 + CH2CH2CF2CF2CH2 0.012 0.012 0.015 0.010

CH2CF2CF2CH2CF + CFCH2CF2CF2CH2 0.012 0.013 0.012 0.016

Прочие последовательности 0.575 0.578 0.472 0.511

-lg(S) 5.24 3.93

Как видно из данных табл. 1, визуальное сравнение значений в наборах А и Б малоин-
формативно, однако величины дисперсии, рассчитанные для двух образцов сополимеров, 
существенно различаются. Как и следовало ожидать, сополимер, полученный в условиях 
раздельной подачи мономеров, имеет лучшую композиционную однородность.

Однако этих данных недостаточно для объективной оценки степени композиционной 
однородности сополимеров. Необходима величина, которую можно было бы принять за точ-
ку отсчета. В качестве такой величины предлагается дисперсия, рассчитанная для полимер-
ной цепи, построенной в условиях, исключающих влияние конверсионной составляющей. 
С этой целью проведен ряд расчетов, выполненных по следующей схеме. Выбирали про-
извольную матрицу переходных вероятностей, в каждой строке которой сумма элементов 
равна единице, на ее основе строили модель полимерной цепи и рассчитывали относитель-
ные доли последовательностей звеньев. Полученный набор долей последовательностей ис-
пользовали в качестве исходного набора А и производили дальнейший расчет по вышеопи-
санной схеме. В результате неоднократного повторения расчета с различными произвольно 
выбранными матрицами переходных вероятностей была получена величина дисперсии для 
модели полимерной цепи, композиционная неоднородность которой обусловлена только 
статистическими причинами, −lg(S) = 9.2 ± 0.4. Это значение рекомендуется использовать в 
качестве максимальной достижимой степени композиционной однородности.

Заключение

На примере образцов сополимеров ВДФ и ГФП с одинаковым составом, но получен-
ных в разных условиях, проведена оценка композиционной однородности сополимеров с 
использованием методов математического моделирования. Предложен количественный 
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критерий оценки степени композиционной однородности. В качестве параметра сравнения 
предложено использовать рассчитанную композиционную однородность модели полимер-
ной цепи, построенной в условиях, исключающих влияние конверсионной составляющей.
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