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Аннотация

Методом сканирующей электронной микроскопии исследована геометрия и структура полово-
локонной мембраны, полученной из полисульфона методом сухо-мокрой инверсии фаз. Рассмотрена 
возможность использования различных аминных отвердителей и бифункционального полиэфира-
мина в композициях герметизирующих составов. Проведена герметизация полученных половоло-
конных мембран в модельные мембранные модули эпоксидными герметизирующими составами, 
которые отличаются отвердителями. По наличию дефектов, возникающих при подаче газов под дав-
лением в месте контакта половолоконная мембрана–эпоксидный состав, оценена практическая при-
менимость этих материалов. Использование полиэфирамина в качестве аминного отвердителя эпок-
сидных систем не приводит к образованию дефектов в месте контакта половолоконных мембран и 
эпоксидного состава при подаче давления вплоть до 0.5 атм и позволяет достичь высоких значений 
селективности по паре газов He/N2 для получаемых модельных мембранных модулей.
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Abstract

The geometry and structure of hollow fiber membranes fabricated from polysulfone by the dry-wet  
phase inversion method were studied with the help of scanning electron microscopy. Various amine 
hardeners and difunctional polyetheramines were analyzed as potential components of sealing compounds. 
The fabricated hollow fiber membranes were sealed in model membrane modules using epoxy sealing 
compounds with different hardeners. The applicability of these materials was assessed based on the presence 
of defects when gases were supplied under pressure at the contact point between the membrane and the 
epoxy. The use of polyetheramine as an amine hardener for the epoxy systems caused no defects at the point 
of contact between the hollow fiber membranes and the epoxy compound, even when pressures up to 0.5 atm 
were applied. This ensures high selectivity values for the He/N2 gas pair in the resulting membrane modules.
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Введение

Половолоконные мембраны, впервые разработанные в 1960-х годах для процесса об-
ратного осмоса, широко используются в настоящее время для фильтрационного разделения 
жидких и газовых сред [1, 2]. Одним из ключевых преимуществ половолоконных мембран 
по сравнению с плоскими или трубчатыми конфигурациями является высокая плотность 
упаковки полых волокон в модуле, которая может достигать 10000 м2/м3 и более [1]. Это 
обеспечивает высокую удельную производительность единицы объема аппарата.

Герметизация торцов мембранных модулей на основе половолоконных мембран являет-
ся одной из важнейших операций при их изготовлении. Для этих целей используют различ-
ные герметизирующие составы, призванные обеспечить фиксацию мембранного материала 
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внутри корпуса мембранного модуля. К таким составам предъявляются следующие требо-
вания: непроницаемость для газов и жидкостей герметизируемых изделий, смачивание ма-
териалов мембраны и корпуса модуля, адгезия к материалу корпуса и мембраны, низкая 
усадка при отверждении, механическая прочность, теплостойкость, определенная эластич-
ность и др. [3, 4].

В качестве основы современных полимерных герметизирующих составов используют 
эпоксидные смолы, полиэфиры, полиуретаны, силиконовые каучуки [5], акриловые гермети-
ки (чаще всего полиметилметакрилаты), термопласты (полиолефины, полиэтилены [6], сопо-
лимеры полиолефинов, полиамиды, полистиролы, поливинилхлориды), полисульфиды [7].  
Герметики также могут содержать теплопроводящие наполнители для улучшения теплоот-
вода при отверждении, пластификаторы, отвердители, модификаторы и др. [8]. Чаще всего 
для герметизации полых волокон применяют эпоксидные смолы. Они изначально находятся 
в форме низковязкой жидкости, которая способна затекать в межволоконное пространство 
и в поверхностные поры волокна с образованием прочной связи после отверждения мате-
риала герметика, происходящего под действием тех или иных веществ (отвердителей) и, 
зачастую, температуры. Этот тип герметизирующих составов обладает высокими механи-
ческими, адгезионными, электроизоляционными характеристиками, небольшой усадкой и 
способностью отверждаться практически без выделения летучих веществ [9].

В эпоксидных системах используют ангидридные, аминные, амидные отвердите-
ли и др., причем чаще выбирают ангидридные и аминные. Ангидридные отвердители, 
такие как малеиновый ангидрид [10], изометилтетрагидрофталевый ангидрид [11], ме-
тилэндиковый ангидрид [12] и др. относятся к так называемым отвердителям «горяче-
го» отверждения. Их преимуществом по сравнению с аминными отвердителями являет-
ся универсальность (возможность отверждать практически любую эпоксидную смолу), 
меньшая токсичность, большая жизнеспособность эпоксиангидридных систем при ком-
натной температуре. Однако отверждение эпоксидных систем этим типом соединений 
часто является весьма длительным процессом, который протекает при повышенных тем-
пературах. С целью сокращения времени отверждения используют ускорители, такие как 
кислоты [13] и основания [14] Льюиса, аминофенолы и их соли [15] и др., среди которых 
наиболее широко применяют третичные алифатические амины [16]. Однако они проявля-
ют токсичные свойства. Другой важной группой отвердителей являются вещества, содер-
жащие первичные и/или вторичные аминогруппы. К ним можно отнести алифатические 
(диэтилентетрамин, триэтилентетрамин (ТЭТА) [17], полиэтиленполиамин (ПЭПА) [18] 
и др.), ароматические (4,4ꞌ-диаминодифенилсульфон [19], 4,4ꞌ-диаминодифенилметан [20] 
и др.), алициклические (изофорондиамин (ИФДА) [21] и др.), гетероциклические амины 
(N-(аминоэтил)пиперазин [22]) и др. Представители этой группы отвердителей также яв-
ляются токсичными. Алифатические амины характеризуются наибольшей реакционной 
способностью, обеспечивающей проведение отверждения при комнатной температуре.

Отверждение эпоксидных смол – это часто экзотермический процесс. При больших объ-
емах заливки и с учетом низкой теплопроводности эпоксидной смолы разогрев реакционной 
массы может быть значительным, что способно привести к большим внутренним напряже-
ниям, которые, в свою очередь, могут повлечь растрескивание заготовки и повреждение 
половолоконных мембран. После отверждения эпоксидного связующего производят отрез 
части отвержденного герметика с формированием торца мембранного модуля. При этой 
операции может происходить повреждение части полых волокон вследствие слишком вы-
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сокой жесткости отвержденного материала. К другим недостаткам эпоксидных компаундов 
можно отнести низкие ударные характеристики и недостаточную трещиностойкость [23].  
Одним из решений этих проблем может быть замедление отверждения или повышение те-
плопроводности системы. Для этих целей могут быть использованы полиэфирамины, по-
зволяющие проводить отверждение при комнатной температуре и обладающие меньшей 
токсичностью и реакционной способностью по сравнению со стандартно используемыми 
алифатическими аминными отвердителями.

Таким образом, задача разработки заливочного компаунда на основе эпоксидных систем 
для герметизации мембранных модулей сводится к модификации эпоксидных связующих, 
в том числе, за счет подбора отверждающей системы. Цель работы состоит в разработке 
компаундов на основе эпоксидных систем для герметизации половолоконных мембран из 
полисульфона (ПСФ) в мембранном модуле. ПСФ является одним из наиболее часто ис-
пользуемых коммерческих мембранных материалов, что обусловлено его низкой стоимо-
стью, высокой термической и механической стабильностью, а также высокой химической 
стойкостью [24].

1. Материалы и методы

1.1. Материалы. В работе использовали эпоксидную смолу ЭД-22 (АО «Химэкс Лими-
тед», Россия). Для отверждения применяли аминные отвердители: ТЭТА, ПЭПА, Л-20М, 
ИФДА, а также полиэфирамин Д-230 (ООО «СУПЕРПЛАСТ», Россия). Соотношение меж-
ду эпоксидной смолой и отвердителями соответствовало стехиометрии отверждения. Пока-
затели вязкости при 25 °С всех представленных выше компонентов согласно данным про-
изводителя составляют 11 и 7 Па×с для ЭД-22 и Л-20М, 14, 250, 15 и 12 мПа×с для ТЭТА, 
ПЭПА, ИФДА и Д-230 соответственно.

Для изготовления половолоконных мембран использовали ПСФ в гранулах марки 
Ultrason® S 6010 (BASF, Германия) и 99 %-ный (EP) N-метил-2-пирролидон (Acros Organics, 
Бельгия) в качестве основного полимера и растворителя соответственно.

1.2. Получение половолоконных мембран. Перед формованием половолоконной 
мембраны полимерный раствор фильтровали под давлением азота 1.8–2.0 бар через сетку 
из нержавеющей стали с ячейкой 4–5 мкм. После процедуры фильтрации раствор полимера 
охлаждали до комнатной температуры и дегазировали в течение ночи под вакуумом.

Половолоконные мембраны из ПСФ получали на исследовательской установке [25] ме-
тодом сухо-мокрой инверсии фаз в варианте «свободного прядения», при котором сформо-
ванное полое волокно под действием силы тяжести поступает в приемную ванну с водой.  
В качестве внутреннего осадителя выступала дистиллированная вода. Для получения по-
лых волокон использовали кольцевую формовочную фильеру с внешним и внутренним ди-
аметрами 0.5 и 0.3 мм соответственно. В качестве исходных параметров формования были 
выбраны давление над раствором 200 кПа, расход внутреннего осадителя 0.45 мл/мин, воз-
душный зазор 0.5 м. После формования образцы половолоконных мембран помещали в 
воду на 5 дней, после чего в течение 24 ч сушили на воздухе при комнатной температуре и 
относительной влажности 60 %.

1.3. Методы исследования мембран. Геометрию и структуру полученных полово-
локонных мембран из ПСФ исследовали методом сканирующей электронной микроскопии 
(СЭМ) на микроскопе Hitachi Tabletop TM 3030 Plus с высокочувствительным низковакуум-
ным детектором вторичных электронов (Hitachi High Technologies Corporation, Япония). 
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Сколы образцов получали в атмосфере жидкого азота, затем на них наносили слой золота 
при помощи напылителя DSR-1 (NSC, Иран), толщина которого составляла 50–100 Å.

1.4. Герметизация половолоконных мембранных модулей. Для приготовления 
эпоксидных систем все компоненты перед смешением выдерживали в вакуумном шкафу 
в течение 1 ч при 50 °С для удаления воды и других летучих примесей. Смешение ком-
понентов проводили при комнатной температуре в течение 10 мин на магнитной мешалке  
IKA C-MAG HS 7 (IKA, Германия), после чего все смеси дегазировали в вакуумном шкафу 
в течение 10 мин при 25 °С. Отверждение проводили в течение 24 ч при 25 °С, что соответ-
ствует рекомендациям по использованию указанных отвердителей.

Оценку качества герметизации места контакта герметизирующего состава и половоло-
конных мембран проводили путем изготовления модельных мембранных модулей, состоя-
щих из 10 половолоконных мембран на основе ПСФ (рис. 1, а), при использовании различ-
ных эпоксидных составов. Полученные модули присоединяли к системе подаче газа (азот) 
через цанговый соединитель трубок и погружали в стакан с водой таким образом, чтобы 
место контакта компаунда и половолоконных мембран оказалось под водой. Качество гер-
метизации оценивали при давлениях 0.1–0.5 бар по наличию и количеству пузырей газа, 
появляющихся в воде (рис. 1, б).

Рис. 1. Фотографии модельных мембранных модулей, используемых для оценки качества 
герметизации (а), и испытания совместимости эпоксидных составов и полых волокон из ПСФ (б)
Fig. 1. Photographs of the model membrane modules used to assess the quality of sealing (a) and to test the 
compatibility of epoxy compounds and hollow fibers from PSF (b)

1.5. Оценка газотранспортных свойств мембранных модулей. Для мембранных 
модулей, прошедших проверку на совместимость эпоксидного состава и половолоконных 
мембран, проводили оценку газотранспортных свойств волюметрическим методом с ис-
пользованием индивидуальных газов (N2, He) при температуре 25 °C и давлении до 6.5 бар.

Расчет проницаемости проводили по уравнению 1

						      (1)

где Р – коэффициент проницаемости по индивидуальному газу, (л×м)/(м2×ч×бар), l – толщи-
на разделяющего слоя мембраны, м, Q – объемный расход газа, который прошел через мем-
брану, м3/ч, p – трансмембранное давление, бар, S – площадь поверхности мембраны, м2.
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Идеальную селективность α по паре газов Не/N2 рассчитывали по уравнению 2

					     (2)

1.6. Статистическая обработка результатов. При определении проницаемости и иде-
альной селективности проводили пять независимых испытаний. Результаты представляли 
как среднее значение и стандартное отклонение, рассчитанные с помощью программного 
пакета Excel (Microsoft Corp., США).

2. Результаты и их обсуждение

2.1. Половолоконные мембраны из ПСФ. Микрофотография изготовленной из ПСФ 
половолоконной мембраны, полученная с помощью СЭМ, представлена на рис. 2. Внешний 
диаметр мембраны составляет 300 мкм, а толщина стенки – 80 мкм.

Рис. 2. СЭМ микрофотография исследуемой половолоконной мембраны из ПСФ
Fig. 2. SEM micrograph of the investigated hollow fiber membrane from PSF

2.2. Оценка совместимости эпоксидных систем и половолоконных мембран  
из ПСФ. Герметизация с использованием исследуемых составов на основе эпоксидной смо-
лы ЭД-22 и различных аминных отвердителей приводит к повреждению половолоконных 
мембран, о чем свидетельствует наличие большого количества пузырей в месте контакта 
половолоконных мембран и эпоксидных составов (табл. 1). Только в случае применения в 
качестве отвердителя полиэфирамина Д-230 при подаче давления до 0.5 атм внутрь модель-
ного мембранного модуля дефекты отсутствуют. Можно предположить, что меньшая актив-
ность полиэфирамина в реакции отверждения по сравнению с аминными отвердителями 
и, соответственно, более долгий период времени до желатинизации обеспечивает возмож-
ность устранения части дефектов. Таким образом, возможна дальнейшая оценка селектив-
ности половолоконных мембранных модулей, в которых используется герметизирующий 
состав на основе эпоксидной смолы ЭД-22 и отвердителя Д-230.
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Табл. 1. Результаты оценки дефектов в месте контакта эпоксидных составов и половолоконных 
мембран
Table 1. Assessment of defects at the point of contact between the epoxy compounds and the hollow fiber 
membranes

Эпоксидный состав Давление, атм Наличие дефекта

ЭД-22 + ТЭТА 0.1 +

ЭД-22 + ПЭПА 0.1 +

ЭД-22 + ИФДА 0.1 +

ЭД-22 + Л-20М 0.1 +

ЭД-22 + Д-230
0.1

0.5 −

На рис. 3 представлена СЭМ микрофотография половолоконных мембран из ПСФ в 
эпоксидной системе ЭД-22 + Д-230, подтверждающая совместимость половолоконной мем-
браны и этого герметизирующего состава. Создание модельных половолоконных модулей с 
герметизацией на основе эпоксидной смолы ЭД-22 и аминных отвердителей ТЭТА, ПЭПА, 
ИФДА, Л-20М требует дальнейшей модификации эпоксидных составов.

Рис. 3. СЭМ микрофотография половолоконных мембран из ПСФ в эпоксидной системе  
ЭД-22 + Д-230
Fig. 3. SEM micrograph of the hollow fiber membranes from PSF in the ED-22 + D-230 epoxy system

2.3. Оценка газотранспортных свойств половолоконных модулей. Оценку га-
зотранспортных свойств проводили для половолоконных модулей с герметизацией с ис-
пользованием состава из эпоксидной смолы ЭД-22 и аминного отвердителя Д-230. В табл. 2 
представлены газотранспортные свойства полученного модуля на основе полых волокон 
из ПСФ и эпоксидного состава ЭД-22 + Д-230. Для сравнения использован половолокон-
ный модуль с герметизацией эпоксидной системой ЭД-22 + ТЭТА, который имеет дефекты, 
выявленные в ходе предварительных испытаний. Близкие значения идеальных селектив-
ностей по паре газов Не/N2 для полученных газоразделительных мембранных модулей с 
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герметизацией системой ЭД-22 + Д-230 (49) и материала ПСФ (52) [26]) свидетельствуют 
об отсутствии дефектов у полученного мембранного модуля с рассматриваемой системой 
герметизации. Отсутствие селективности по паре газов Не/N2 для модуля с герметизацией 
системой ЭД-22 + ТЭТА подтверждают результаты предварительных испытаний и указы-
вают на наличие дефектов на месте стыка эпоксидного состава с полым волокном из ПСФ.

Табл. 2. Газотранспортные свойства модулей из полых волокон на основе ПСФ и различных 
герметизирующих составов
Table 2. Gas transport properties of the hollow fiber modules based on PSF and various sealing compounds

Эпоксидный состав
Проницаемость P/l, л/(м2×ч×бар) Идеальная селективность α

N2 Не Не/N2

ЭД-22 + ТЭТА 335 ± 30 535 ± 35 1.6 ± 0.3

ЭД-22 + Д-230 5.0 ± 0.4 245 ± 20 49 ± 2

Заключение

В работе исследована возможность использования различных эпоксиаминных составов 
в качестве герметизирующих при создании модельных половолоконных мембранных моду-
лей на основе половолоконной мембраны из полисульфона. Показано, что модули, для кото-
рых в качестве отвердителя выступал полиэфирамин, характеризуются отсутствием дефек-
тов и наибольшей идеальной селективностью по паре газов Не/N2. Разработанные модули с 
половолоконными мембранами из ПСФ могут применяться не только для выделения гелия, 
но и для извлечения водорода из газовых смесей, а также для получения технического азота 
из атмосферного воздуха.

Таким образом, для создания бездефектных модельных половолоконных мембранных 
модулей на основе половолоконной мембраны из полисульфона при использовании эпок-
сиаминных систем можно использовать аминные отвердители, обладающие меньшей реак-
ционной способностью по сравнению со стандартными отвердителями (такими как ТЭТА, 
ПЭПА, ИФДА). Дальнейшее развитие исследований может быть сфокусировано на исполь-
зовании активных разбавителей, уменьшающих скорость протекания реакции отверждения 
эпоксидных смол.
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